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Many methods on modeling failure processes of repairable systems have been developed. 
Based on different assumptions on the repairs, the models can be classified into three 
categories: models for minimal repair, models for general repair and models for perfect 
repair. In this paper, we will discuss a log linear model based on the general repair 
assumption. This model is integrated with the Kijima virtual age model to consider the 
repair effect on failure intensity.  
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1.   Introduction 

The failure process of a repairable system can be described by the failure 
intensity function. Functions with different mathematic forms have been used in 
the past, such as power law, log-linear, s-shaped function, etc. [1, 2, 6, 10]. 
Methods that can model the effect of repairs have been integrated into some of 
the above mentioned functions. A great review is provided by [7]. In general, for 
a complex system, depending on the nature of the failures, the effect of a repair 
can be classified into three categories:  



 
 

• Minimal repair: This is also called “as bad as old”. Repair following a 
failure will restore the system to its status right before the failure.  

• Perfect repair: This is also called “as good as new”. Repair can be 
treated as replacement. The system will be treated as brand new after a 
repair. 

• General repair: This is also called “better than old but worse than new”. 
After repair, the system is restored to a status somewhere between the 
above two situations.  

Modeling and parameter estimation methods for all the above three cases 
have been well developed and discussed. In recent years, a fair amount of 
attention has been paid to the modeling of systems with “general repair”. In 
general, the effect of a “general repair” can be modeled in two ways in the 
failure intensity function:  

• Reduce the failure intensity  
• Reduce the age of the system 
Lawless and Thiagarajah [9] has used a log-linear model with reduced 

failure intensity to model systems with general repair. Guo [6] used the 
operation time and the number of repairs to model the failure intensity and the 
effect of repairs. Age-reduced model is first introduced by Kijima [8] and used 
by Gasmi et. al [5], Yanez, et. al [12] and many others.  In age-reduced models, 
the concept of “virtual age” is introduced and integrated in the models. For any 
given operation time t, there is a corresponding virtual age of the system 
associated with it. The failure intensity is determined by the virtual age instead 
of the operation time. Virtual age is a function of the operation time and the 
number of repairs. According to Kijima, there are two types of virtual age: 
 
Kijima Model I: 

Kijima model I assumes that the nth repair can remove the damage incurred 
between the (n-1)th and the nth failures; therefore it partially reduces the 
additional age of the system from nx  to nqx . Accordingly, the virtual age after 
the nth repair becomes: 

1n n nv v qx−= +                                     (1) 

or, 

1 2( )n n nv q x x x qt= + + + =                    (2) 

where ix  is the time interval from the i-1th failure to the ith failure; nt is the 
operation time when the nth failure occurs. q  is a model parameter that 



 
 
represents the effect of the nth repair. In Eq.(1) and (2), it can be seen that q is 
assumed to be a constant value although it can be different for each repair. 
 
Kijima Model II:   

This model assumes that the nth repair will remove the cumulative damage 
from both current and previous failures. The nth repair modifies the virtual age 
that has been accumulated till to the repair time, i.e., 1n nv x− + . Therefore, 

1( )n n nv q v x−= +                                          (3) 

which is the same as 
1 2

1 2( )n n
n nv q q x q x x− −= + + +                                (4) 

The basic idea of the virtual age models is to substitute the real time with 
the virtual age for failure intensity calculation.  

Applying the virtual age to power law failure intensity functions has been 
discussed by Gasmi, et. al [5] and Yanez et. al [12]. In this paper, we will 
illustrate how to applying virtual age to the log-linear model. Modeling and 
parameter estimation will be discussed in detail in the following sections. Case 
study will also be provided. Similar to most of the published models, the repair 
time is ignored.  

2.   Mythology 

2.1.   Modeling and Parameter Estimation 

The log-linear model is related to the famous proportional hazard model 
proposed by Cox [1]. The failure intensity is assumed to have the following 
form: 

' ( )( ) z tt eθλ =                                                   (5) 

where ( )1( ) ( ),..., ( ) 'pz t z t z t=  is a vector of functions that depends on time t. 
Usually it represents the operation condition of a system at time t. 

( )1,..., 'pθ θ θ=  is the unknown model parameters. If the operation condition 
is constant and failure rate can be simply modeled by time t, Eq.(5) becomes: 

( ) a btt eλ +=                                                    (6) 

In this paper, we will use Eq. (6) as our base model for illustration.  



 
 

In Eq. (6), time t is the cumulative operation time of the system. If the repair 
is minimal repair, t is also the system age. Therefore, we can use Eq.(6) directly 
to get the failure intensity at time t. However, if the repairs are assumed to be 
general repairs, we need to use ( )v t , the virtual age or the age at time t in 
Eq.(6). ( )v t  is calculated using the following equation: 

( ) ( )n nv t v t t= + −  (7) 

where nv  is the age right after the latest repair before time t; nt  is the failure 
time of the latest failure before time t. Using ( )v t  to replace t in Eq. (6), we 
have: 

( )( ) a b v tt eλ + ×=                                                     (8) 

We can see there are three parameters in the log-linear model with virtual 
age. They are a, b and q. We will use Maximum Likelihood Estimation (MLE) 
to estimate them. Let the duration from the (i-1)th failure to the ith failure to be 

ix .  For simple, let’s first assume the repair is minimal repair. So the system age 
( )v t  is the same as the operation time t. The failure distribution for ix  is: 

( ) ( ) ( )
1

1 1
1

( ) ( )| |
1

i i
i i i i n i i i

i

F t F tP X x T t P T t T t
F t
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            (9) 

( )iF t  is the CDF for the cumulative failure time at the ith failure. It can be 
obtained using the following equation: 

( )
0 0

1 1( )
( ) 1 ( ) 1 1 1

t t a bta bt e et dt e dt
bF t R t e e e

λ + − −− −∫ ∫= − = − = − = −        (10) 

For the case of general repair, the failure time it  in Eq. (9) is replaced by the 
corresponding system age iv . Therefore, the failure distribution for ix  becomes: 

( ) ( ) ( )
1 1

1 1
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Take the derivative respect to ix  from Eq. (11), we get the conditional pdf 
(probability density function) for ix  as: 

( )1 1
1

1

1( | )
a bv bx a bvi i i

i ia bv bx e e
b

i if x v e
+ + +− −

−+ + − −

− =                           (12) 



 
 
where 1iv −  can be calculated using Eq.(2) or Eq. (4). Once the pdf is obtained 
for each observed failure time, the likelihood function can be calculated using: 

( )1 2 1 1( | , , ) ( ) ( | ) ( | ) |n n nL data a b q f x f x v f x v R T v−= ⋅⋅⋅      (13) 

where T is the end time of the test or operation and: 

( ) ( )1( )|
( )

a bv bT bt a bvn n ne en n b
n
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R v T tR T v e
R v

+ + − +− −+ −
= =  

Take the logarithm transform, Eq.(13) becomes: 
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Eq. (14) is for a single system. For multiple system with the same failure 
behavior, the log likelihood function is: 
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Eq. (5) can be used to solve parameter a, b and q by maximizing the log 
likelihood function.  

2.2.   Model Applications 

Once the model parameters are obtained, we can use them to predict the number 
of failures and the failure intensity at any give time T. In the case of minimal 
repair, the system age is the same as the system operation time. A closed form 
solution exists for number of failures at time T. It is: 

 
0 0

1( ) ( ) ( 1)
T T a bt a bTN T t dt e dt e e

b
λ += = = −∫ ∫                 (16) 

However, for the case of general repair, no closed form equation for the number 
of failures exists. This is because ( )tλ  is not a continuous function any more. 



 
 
As shown in Eq. (8),  ( )tλ  is determined by the virtual age ( )v t  at time t. 
From Eq.(2), (4) and (7), it is also clear that in order to get ( )v t , we need to 
know the exact failure time for each failure before time t. However, this is 
impossible for a given future time t since future failures haven’t occurred yet. If 
we assume the system failure behavior is represented by the failure and repairs 
we have seen, we can use simulation to make prediction. The model used in the 
simulation is the model we have found from the failure data. From the 
simulation, the expected number of failures and the expected virtual time at time 
t can be found. The flow chart of the simulation is given in Figure 1. 

Select Time T

For j=1 to S

Set t=0, N(j)=0; 
V(j)=0

Generate Random x
Set t=t+x and Calculate v

t<T

N(j)=N(j)+1; 
V(j)=v

Generate Random x
Set t=t+x and Calculate v

j<S

No

Yes

Yes
No

N(T)_Expected=Average(N(j))
V(T)_Expected=Average(V(j))

Stop
 

Figure 1. Simulation Flow Chart to Get the Expected N(T) and v(T) 
 
In Figure 1, S is the number of simulations. Prediction using simulation is 

working through the following way. From each simulation, the simulated number 
of failures and the virtual age at time T are obtained. The expected N(T) and v(T) 
are the averages of the simulated N(T) and v(T) from S simulation runs. Using 
the expected v(T), the expected value of the failure intensity at time T then can 
be calculated.  



 
 
3.   Case Study 

The times to failure of a system is given in Table 1.  
 

Table 1. Times to Failure Data 
 

3444 12818 18131 

5036 13212 19651 

5260 15649 19703 

5791 15683 22756 

7604 16050 23093 

8055 17045 24603 

8493 17701 24953 

9756 17882 25290 

 
The log-linear function is used for the failure intensity. Two models are 

fitted to the data. One is the regular log-linear model with minimal repair 
assumption; the other is the log-linear model with Kijima type II virtual age for 
general repairs. The results are given in Table 2. 

 
Table 2. Parameters for Log-linear Models 

 

Parameter 
Log-linear 
(minimal 

repair) 

Log-linear 
(general 
repair) 

a -7.46507 -8.87644 

b 0.000034 0.000418 

q - 0.813601 

Log-likelihood -190.931 -188.504 

 
The log-likelihood values in Table 2 can be used to test if the parameter q is 

significant or not. If q is not significant, the following statistic will 
approximately follow a chi-square distribution: 

2
0 1 12(ln ln )LR L L χ= − −                                    (17) 

where lnL0 and lnL1 are the log-likelihood value for the minimal repair model 
and the general repair model. Using the values are Table 2, we can get 
LR=4.855. The corresponding P-value for the given LR is 0.028. Therefore, 
Parameter q is significant at significance level of 0.05 since p-value is less than 
0.05.  



 
 

Applying the model parameters in the simulation (number of simulation = 
5,000), we can simulate the expected number of failures, expected failure 
intensity and expected virtual age for any given time T. They are given in Figure 
2, 3 and 4. 
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Figure 2. Failure Number N(T) 

Failure Intensity Lambda(t)
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Figure 3. Failure Intensity Function ( )Tλ  



 
 

Type II Virtual Age
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Figure 4. Kijima Type II Virtual Age ( )v T  

4.   Conclusion 

In this paper, we discussed how to integrate the virtual age idea into the 
existing log-linear function to model repairable systems with general repair. 
Parameter estimation and model applications are presented in detail. This model 
is useful when only information on the number of failures and repairs are 
available. If more detailed information such as the inspection strategy, severity 
of the failures, the effectiveness of each repair, and the operation condition of 
the system when failure occurs are available, more advanced models should be 
applied [3, 4, 11].  
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