![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reliability HotWire | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hot Topics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ReliaSoft's Ranking MethodWhen analyzing interval data, it is commonplace to assume that the actual failure time occurred at the midpoint of the interval. To be more conservative, you can use the starting point of the interval or you can use the end point of the interval to be most optimistic. Weibull++ allows you to employ ReliaSoft's ranking method (RRM) when analyzing interval data. Using an iterative process, this ranking method is an improvement over the standard ranking method (SRM). This article presents an example using the two-parameter Weibull distribution to illustrate how this method is employed. This method can also be easily generalized for additional models. Step-by-Step Example
Table 1: Test data. As a preliminary step, we need to provide a crude estimate of the Weibull parameters for this data. To begin, we will extract the exact times-to-failure (10, 40 and 50) and append them to the midpoints of the interval failures: 50 (for the interval of 20 to 80) and 47.5 (for the interval of 10 to 85). Now, the extracted list consists of the data in Table 2.
Table 2: Union of exact times-to-failure with the midpoint of the interval failures. Using the traditional rank regression, we obtain the first initial estimates: Step 1 This transforms the data into the format displayed in Table 3.
Table 3: Union of exact times-to-failure with the midpoint based on parameters β and η . Step 2
Table 4: Union of exact times-to-failure in ascending order. Step 3 Table 5: Computation of increments for computing a revised mean order number. In general, for left censored data: The increment term for n left censored
items at time = t0, with a time-to-failure of ti,
when t0 When t0 > ti-1 the contribution is: Or: Where ti-1 is the time-to-failure previous to the ti time-to-failure and n is the number of units associated with that time-to-failure (or units in the group). Or: Step 4 Table 6: Increments solved numerically. Step 5 Table 7 - Mean Order Numbers (MON). Step 6 Table 8 - Mean Order Numbers with ranks for a sample size of 13 units. Step 7 Table 9 - New times and median ranks for regression. Step 8 Results Table 10 - The parameters after the first five iterations. Using Weibull++ with rank regression on X yields: The direct MLE solution yields:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Copyright 2003 ReliaSoft Corporation, ALL RIGHTS RESERVED |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||