Determining the Right Sample Size for Your Test: Theory and Application

Huairui Guo, Ph. D., Edward Pohl, Ph. D.
&
Athanasios Gerokostopoulos

Huairui Guo
ReliaSoft Corporation
1450 S. Eastside Loop
Tucson, AZ, 85710, USA
e-mail: Harry.guo@reliasoft.com
Internet (e-mail): bowles@engr.sc.edu

Edward Pohl
Industrial Engineering
University of Arkansas
4207 Bell Engineering Center
Fayetteville, AR, 72701, USA
e-mail: epohl@uark.edu

Athanasios Gerokostopoulos
ReliaSoft Corporation
1450 S. Eastside Loop
Tucson, AZ, 85710, USA
e-mail: Athanasisos.Gerokostopoulos@reliasoft.com

Tutorial Notes © 2014 AR&MS
SUMMARY & PURPOSE

Determining the right sample size in a reliability test is very important. If the sample size is too small, not much information can be obtained from the test in order to draw meaningful conclusions; on the other hand, if it is too large, the information obtained through the tests will be beyond that needed, thus time and money are wasted. This tutorial explains several commonly used approaches for sample size determination.

Huairui Guo, Ph.D., CRE, CQE, CRP

Huairui Guo is the Director of Theoretical Development at ReliaSoft Corporation. He received his Ph.D. in Systems and Industrial Engineering from the University of Arizona. He has conducted consulting projects for over 20 companies from various industries, including renewable energy, oil and gas, automobile, medical devices and semi-conductors. As the leader of the theory team, he is deeply involved in the development of Weibull++, ALTA, DOE++, RGA, BlockSim, Lambda Predict and other products from ReliaSoft. Dr. Guo is a member of SRE, IIE and ASQ. He is a Certified Reliability Professional (CRP), a Certified Reliability Engineer (CRE) and a Certified Quality Engineer (CQE).

Edward Pohl, Ph.D.

Edward A. Pohl is a Professor in the Department of Industrial Engineering at the University of Arkansas. Ed currently serves as the Director of the Operations Management Program, the Director of the Center for Innovation in Healthcare Logistics and the Director of the ReliaSoft Risk, Reliability and Maintainability Research Alliance at the University of Arkansas. He has participated and led several risk and reliability related research efforts at the University of Arkansas. Before coming to Arkansas, Ed spent twenty years in the United States Air Force where he served in a variety of engineering, analysis, and academic positions during his career. Ed received his Ph.D. in Systems and Industrial Engineering from the University of Arizona. His primary research interests are in supply chain risk analysis, decision making, engineering optimization, quality and reliability. Ed is a Senior Member of IEEE, IIE, ASQ and SRE.

Athanasios Gerokostopoulos, CRE, CQE, CRP

Athanasios Gerokostopoulos is a Reliability Engineer at ReliaSoft Corporation. He is involved in the development of ReliaSoft’s software products and the delivery of training seminars and consulting projects in the field of Reliability and Quality Engineering. His areas of interest include Reliability Program Plans, Design for Reliability, System Reliability, and Reliability Growth Analysis. Mr. Gerokostopoulos holds an M.S. degree in Reliability Engineering from the University of Arizona and an MBA from the Eller College of Management at the University of Arizona. He is a Certified Reliability Professional (CRP), an ASQ Certified Reliability Engineer and a Certified Quality Engineer.

Table of Contents

1. Introduction ...1
2. Determining Sample Size Based on the Estimation Approach ..1
 2.1 An Introductory Example..1
 2.2 Determining Sample Size for Life Testing ...2
 2.3 Determining Sample Size for Accelerated Life Testing ...3
3. Determining Sample Size Based on the Risk Control Approach ...5
 3.1 An Introductory Example..5
 3.2 Non-Parametric Binomial Reliability Demonstration Test ..5
 3.3 Parametric Binomial Reliability Demonstration Test ..6
 3.4 Exponential Chi-Squared Demonstration Test ..7
 3.5 Non-Parametric Bayesian Test ..8
4. Conclusions .. 9
5. References ... 9
6. Tutorial Visuals ..10
1. INTRODUCTION

In reliability testing, determining the right sample size is often times critical since the cost of tests is usually high and obtaining prototypes is often not easy. If the sample size used is too small, not much information can be obtained from the test, limiting one’s ability to draw meaningful conclusions; on the other hand, if it is too large, information obtained through the tests may be beyond what’s needed, thus incurring unnecessary costs.

Unfortunately, the majority of time, the reliability engineer does not have the luxury to request how many samples are needed but has to create a test plan based on the budget or resource constrains that are in place for the project. However, more often than not, when a reliability test design is solely based on resource constraints, the results are not very useful, often yielding a reliability estimate with a very large amount of uncertainty. Therefore, test designs always involve a trade-off between resource expenditure and confidence in the results. One needs to have a good understanding of what amount of risk is acceptable when calculating a reliability estimate in order to determine the necessary sample size. This tutorial will provide an overview of the methods that are available to help reliability engineers determine this required sample size.

In general, there are two methods for determining the sample size needed in a test. The first one is based on the theory of confidence intervals, which is referred to in this tutorial as the estimation approach, while the other is based on controlling Type I and Type II errors and is referred to as the risk control approach. The second one is also called power and sample size in the design of experiments (DOE) literature since power is defined as 1 minus the Type II error. The theory and applications of these two methods are given in the following sections.

2. DETERMINING SAMPLE SIZE BASED ON THE ESTIMATION APPROACH

2.1 An Introductory Example

In statistical analysis, as the sample size increases the confidence interval of an estimated statistic becomes narrower. To illustrate this point, assume we are interested in estimating the percentage, x, of black marbles in a pool filled with black and red marbles.

![Figure 1. A Pool with Black and Red Marbles](image)

Assume that a sample of 20 marbles was taken from the pool. 5 are black and 15 are red. The estimated percentage is $5/20 = 25\%$. Now assume that another sample of 20 marbles was taken and the estimated percentage is 35\%. If we repeated the above process over and over again, we might find out that this estimate is usually between $x_1%$ and $x_2\%$, and we can assign a percentage to the number of times our estimate falls between these two limits. For example, we might notice that 90\% of the time the percentage of the black marbles is between 5\% and 35\%. Then the confidence interval (or more precisely, tolerance interval of the percentage) at a confidence level of 90\% is 5\% and 35\%. In other words, we are 90\% confident that the percentage of black marbles in the pool lies between 5\% and 35\%, or if we take a sample of 20 marbles and estimate the percentage of the black marbles, there is a 10\% chance the estimated value is outside of those limits. That 10\% is called the risk level or significance level. The relationship between the risk level α and the confidence level CL is:

$$\alpha = 1 - CL$$

(1)

Now, let’s increase the sample size and get a sample of 200 marbles. From this sample, we found 40 of them are black and 160 are red. The estimated percentage is $40/200 = 20\%$. Take another sample of 200 and the estimated x is 15\%. If we repeat this over and over again, we may observe that 90\% of the time, the percentage of black marbles is between 15\% and 25\% which is narrower than the intervals we obtained when taking a sample size of 20 marbles.

Therefore, the larger the sample size, the narrower the confidence interval will become. This is the basic idea for determining sample size based on the requirement placed on the confidence interval of a given statistic. This requirement is usually given in terms of the bound ratio as given below:

$$B = \frac{x_{U,CL}}{x_{L,CL}}$$

(2)

or in terms of the bound width as:

$$B = x_{U,CL} - x_{L,CL}$$

(3)

where $x_{U,CL}$ and $x_{L,CL}$ are the upper bound and lower bound of a statistic at confidence level CL. If the variable of interest x follows a normal distribution, the bound width of Eq.(3) is used. If the variable is assumed to follow a lognormal distribution, then the bound ratio of Eq.(2) is usually used.

For instance, assume that the required width of the bounds is 0.10 for the above marble example. A sample size of 20 will not be adequate since the bound width was found to be 0.35-0.05=0.30 which is too wide. Therefore, we have to increase the sample size until the bound width is less than or equal to 0.10.

The above procedure can be done using simulation. If we assume the true value of the percentage of black marbles is $\mu_x =0.20$, we can generate 20 observations based on this value. To do this, we first generate a random number between 0 and 1. If this random number is less than or equal to 0.2, then the observation is a black marble. Otherwise, it is red. Doing this 20 times we can generate 20 observations and estimate the percentage of black marbles x. Repeating this for many simulation runs, the bounds of the percentage at a given confidence level can be obtained. These bounds are sometimes
called simulation bounds. If we assume that x follows a certain distribution, the bounds can even be calculated analytically. For example, assume that the percentage x is normally distributed. Then its upper and lower bounds (two-sided) are:

\[
x_{L, CL} = \mu_x + k_{0.2} \sqrt{\frac{\sigma_x^2}{n}}, \quad x_{U, CL} = \mu_x + k_{0.2} \sqrt{\frac{\sigma_x^2}{n}} \tag{4}
\]

where $k_{0.2}$ is the $(1 + CL)/2$ percentile of the standard normal distribution and n is the sample size. The definition and relationship between α and CL is given in Eq.(1). The bound width is:

\[
B = 2k_{0.2} \sqrt{\frac{\sigma_x^2}{n}} \tag{5}
\]

Given a desired confidence level of 90%, $k_{0.2}$ is 1.645. If the required bound width is 8%, then from Eq.(5), the necessary sample size can be solved. In this case it is:

\[
n = \frac{\mu_x(1-\mu_x)}{B^2} \times 4k_{0.2}^2 = \frac{0.2(1-0.2)}{0.08^2} \times 4(1.645)^2 = 270.55 \tag{6}
\]

Therefore, 271 samples are needed in order to have a bound width of 8% for the estimated percentage of black marbles.

2.2 Determining Sample Size for Life Testing

When it comes to reliability testing, the logic for determining the necessary sample size is the same as with the marble example. The sample size can be determined based on the requirement of the confidence interval of reliability metrics such as, reliability at a given time, B10 life (time when reliability is 90%), or the mean life. Usually, reliability metrics are assumed to be log-normally distributed since they must be positive numbers. Therefore the requirement for the confidence interval is determined using the bound ratio. The sample size can either be determined using simulation or analytically.

2.2.1 Analytical Solution

Using the Weibull distribution as an example, the reliability function is:

\[
R(t) = e^{\left(\frac{t}{\eta}\right)^\beta} \tag{7}
\]

Assuming that the estimated reliability from a data set is log-normally distributed, the bounds for the reliability at t are:

\[
\ln(R_{L, CL}) = \ln(\hat{R}) + k_{0.2} \sqrt{Var(\ln(\hat{R}))} \\
\ln(R_{U, CL}) = \ln(\hat{R}) - k_{0.2} \sqrt{Var(\ln(\hat{R}))} \tag{8}
\]

The bound ratio is:

\[
B = \frac{R_{U, CL}}{R_{L, CL}} = 2k_{0.2} \sqrt{Var(\ln(\hat{R}))} \tag{9}
\]

where \hat{R} is the estimated reliability and $Var(\ln(\hat{R}))$ is the variance of the logarithm transformation of the estimated reliability. $Var(\ln(\hat{R}))$ is a function of sample size and can be obtained from the Fisher information matrix $[1, 2]$. If the bound ratio B is given, we can use Eq.(9) to calculate $Var(\ln(\hat{R}))$ and get the necessary sample size.

2.2.2 Simulation

The process of using simulation to design a reliability test is similar to the one described in the introductory example. First, the required input to the simulation is an assumed failure distribution and its associated parameters. The next step is to generate a uniform random number between 0 and 1. Using the reliability equation of the chosen failure distribution, we can substitute this generated number for the reliability and calculate a time to failure. This can be repeated multiple times in order to obtain a desired sample size of times to failure. Then, this sample is used to re-estimate the parameters of the chosen distribution. Repeating this whole process for multiple simulation runs, we can obtain multiple sets of estimated parameters. Finally, by ranking those parameters in an ascending order, we can obtain the upper and lower bounds at a given confidence level of the parameters and any metrics of interest. More information on the simulation process is provided in [2].

An example that illustrates how to determine the required sample size for a reliability test using simulation is given below.

Example 1: From historical information, an engineer knows a component’s life follows a Weibull distribution with $\beta = 2.3$ and $\eta = 1,000$. This information is used as the input for the simulation. The engineer wants to determine the required sample size based on the following estimation requirement: based on the failure data observed in the test, the expected bound ratio of the estimated reliability at time of 400 should be less than 1.2.

Solution for Example 1: In order to perform simulation the SimuMatic tool in Weibull++ was used. The bound ratio for different sample sizes was obtained through simulation and is given in the Table below.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Upper</th>
<th>Lower</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.9981</td>
<td>0.7058</td>
<td>1.4143</td>
</tr>
<tr>
<td>10</td>
<td>0.9850</td>
<td>0.7521</td>
<td>1.3096</td>
</tr>
<tr>
<td>15</td>
<td>0.9723</td>
<td>0.7718</td>
<td>1.2599</td>
</tr>
<tr>
<td>20</td>
<td>0.9628</td>
<td>0.7932</td>
<td>1.2139</td>
</tr>
<tr>
<td>25</td>
<td>0.9570</td>
<td>0.7984</td>
<td>1.1985</td>
</tr>
<tr>
<td>30</td>
<td>0.9464</td>
<td>0.8052</td>
<td>1.1754</td>
</tr>
<tr>
<td>35</td>
<td>0.9433</td>
<td>0.8158</td>
<td>1.1563</td>
</tr>
<tr>
<td>40</td>
<td>0.9415</td>
<td>0.8261</td>
<td>1.1397</td>
</tr>
</tbody>
</table>

Table 1. Bound Ratio (90% 2-sided bound) for Different Sample Sizes

From the above table, we see that the sample size should be at least 25 in order to meet the bound ratio requirement. Clearly, with samples above 25, we will be even more confident on the result because the bound ratio becomes...
smaller. The effect of sample size can be seen in Figure 2.

![Figure 2(a). Simulation Result for Sample Size of 5](image)

![Figure 2(b). Simulation Result for Sample Size of 40](image)

From Figure 2 we see that the confidence interval for the estimated reliability is much wider at a sample size of 5 than it is for a sample size of 40.

2.3 Determining Sample Size for Accelerated Life Testing

The estimation approach is also widely used for designing accelerated life testing (ALT). For the case of ALT, in addition to determining the total number of samples, we also need to determine the appropriate stress levels and how the samples should be allocated at each stress level. Similar to the test design for life test data, a test plan can be created using either an analytical solution or simulation. However for the case of ALT, simulation is rather cumbersome since besides the necessary assumptions regarding the parameters of the life-stress relationship and the failure distribution one needs to determine the optimal stress levels and the allocated units at each level. For that reason the analytical solution is more widely used in designing an ALT. In this section we’ll provide an overview of the available analytical test plans, illustrate their use through an example and use simulation to validate the results of the test plan.

Many optimal testing plan methods have been proposed based on the estimation approach. “Optimal” refers to the fact that if the sample size is given, the optimal test plans will result in the minimal variance for an estimated reliability metric such as the B(X) life under different constraints.

For single stress, the most popular test plans are [6]:

- **The 2 Level Statistically Optimum Plan.** The plan will recommend two stress levels. One will be the maximum allowable stress and the second will be computed so that the variance of the B(X) life is minimized.

- **The 3 Level Best Standard Plan.** The plan will recommend three equally spaced stress levels with equal allocations. One stress will be the maximum allowable stress and the other two stresses will be computed so that the variance of the B(X) life is minimized.

- **The 3 Level Best Compromise Plan.** The plan will recommend three equally spaced stress levels using the same approach as the 3 Level Best Standard Plan. The difference is that the proportion of the units to be allocated to the middle stress level is defined by the user.

- **The 3 Level Best Equal Expected Number Failing Plan.** The plan will recommend three equally spaced stress levels using the same approach as the 3 Level Best Standard Plan. The difference is that the proportion of units allocated to each stress level is calculated such that the number of units expected to fail at each level is equal.

Let’s use an example to show how to design an optimal accelerated life test.

Example 2: A reliability engineer is asked to design an accelerated life test for a new design of an electronic component. Initial HALT tests have indicated that temperature is the major stress of concern. The temperature at use condition is 300K, while the design limit was 380K. Looking at historical data of the previous design, he finds that after 2 years of operation (6,000 hours of usage) approximately 1% of the units had failed. He also knows the beta parameter of the Weibull distribution was 3. Given that the failure mode of the new design is expected to be similar, he feels that this is a good approximation for beta. Finally, previous tests have indicated that an acceleration factor of 30 can be achieved at temperature levels close to the design limit. He has 2 months or 1,440 hours and 2 chambers for the test. He wants to determine

- the appropriate temperature that should be set at each test chamber, and

- the number of units that should be allocated to each chamber.

Using the failure data obtained from the test, the failure distribution for the component can be estimated. Assume it is required to have a bound ratio of 2 with a confidence level of 80% for the estimated B10 life at the usage temperature.

Solution for Example 2: An optimal test plan can be found using either the simulation method or the analytical method. First, a test plan based on the analytical method will be generated and the results will be validated using simulation. The steps to generate a test plan are:

1. **Step 1:** Determine the eta parameter of the Weibull distribution at the normal use temperature. From Eq.(7), we
Since the acceleration factor is believed to be 30, the eta value at the design limit of the temperate can be calculated as follows: 27802.96/30 = 926.765.

Step 2: Calculate the expected probability of failure at the usage stress level and at the design limit by the end of the test.

\[P_f = 1 - e^{-\frac{\eta_1}{T}} = 0.00014; \]
\[P_f = 1 - e^{-\frac{\eta_2}{T}} = 0.97651 \]

Step 3: Using a software package such as ALTA PRO from ReliaSoft, one can calculate the optimal design. The following screenshots are from ALTA PRO.

Since \(\eta_1 \) is calculated as 27802.96 at 300K and \(\eta_2 \) as 926.765 at 380K in this example, we can use this information in Eq. (11) to get the parameters of the Arrhenius model. They are \(B = 4846.7069 \) and \(C = 0.002677 \). Finally, note that the beta parameter of the Weibull distribution was assumed to be 3.

Using the above calculated parameters and the optimal test plan that was obtained from the analytical solution (stress levels and units allocated at each level) as inputs to the simulation, the simulated upper bound for the B10 life is found to be 19262.67 and the lower bound 9532.1649. The simulated bounds ratio is 19262.67/9532.1649 = 2.02 which is very close to the requirement. The plot of the simulation results is given below.

It should be noted that it is rather cumbersome to use simulation in order to obtain an optimal test plan for
accelerated life testing since both the optimal stress levels and the optimal sample size at each stress level need to be determined by the user before running the simulation. Therefore, the analytical method is generally preferred in ALT. However, for regular life tests, since the sample size is the only variable that needs to be determined, we can use either the simulation method or the analytical method. Many applications of this estimation approach can be found in the literature. For example, it was used to design a test for repairable systems [3] and used to design an effective test for detecting a specific difference between the lives of two products [4]. The method behind the analytical solution of an ALT test plan is beyond the scope of this tutorial. Readers are referred to Reference [1].

The estimation approach discussed so far requires assuming a failure distribution and estimating the model parameters. In order to estimate parameters, failures are needed. If there are no failures in a test (when the test duration is short), the estimation approach cannot be used. However, we can still get some information regarding reliability from a zero failure test. For example, one would expect that testing 1,000 samples without failure would result in a higher demonstrated reliability than testing 10 samples without failure. Therefore the question that needs to be answered is how many samples are needed in order to demonstrate a required reliability in a zero failure test scenario. This question can be answered by using the method presented in Section 3.

3. DETERMINING SAMPLE SIZE BASED ON THE RISK CONTROL APPROACH

The risk control approach is usually used in the design of reliability demonstration tests. In reliability demonstration tests, there are two types of risks. The first, Type I risk, is the probability that although the product meets the reliability requirement it does not pass the demonstration test. This is also called producer’s risk, \(\alpha \) error, or false negative. Second, there is Type II risk, which is the probability that although the product does not meet the reliability requirement it passes the demonstration test. This is also called the consumer’s risk, \(\beta \) error, or false positive. 1- \(\beta \) is usually called the power of the test. The following table summarizes the above statements.

<table>
<thead>
<tr>
<th>Do not reject H0</th>
<th>When H0 is true</th>
<th>When H1 is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct decision (probability = 1 - (\alpha))</td>
<td>Type II error (probability = (\beta))</td>
<td></td>
</tr>
<tr>
<td>Reject H0</td>
<td>Type I error (probability = (\alpha))</td>
<td>correct decision (power = 1 - (\beta))</td>
</tr>
</tbody>
</table>

Table 2. Summary of Type I and Type II Errors

Note that H0 is the null hypothesis which is that the product meets the reliability requirement and H1 is the alternative hypothesis which is that the product does not meet the reliability requirement. With an increase of sample size, both Type I and Type II risks will decrease. A sample size can be determined based on controlling Type I risk (It also determines the confidence interval for the null hypothesis), Type II risk, or both.

3.1 An Introductory Example

Example 3: The voltage reading of a small device made from a manufacturing line is a critical reliability parameter. If it is higher than 12 volts, the device is defined as having failed. It was found that the readings follow a normal distribution with a mean of 10 and a standard deviation of 1. Based on this information, the reliability of this device is:

\[R = \Pr(x < 12) = 0.977 \]

Due to the degradation of the manufacturing line, the mean value of the voltage reading will increase with time, leading to a decrease in the device reliability. Therefore, samples should be taken every day to monitor the manufactured devices. If one of the samples fails, the manufacturing line should be recalibrated. How many samples should be taken in order to have a 90% chance of detecting the problem once the reliability is below 0.95?

Solution for Example 3: In this example, the requirement of 90% for the detection power is given. The sample size should be determined based on this requirement. Assume \(n \) samples are taken for testing. If the reliability has decreased to 0.95, the probability of detecting this decrease is:

\[P = 1 - R^* = 1 - 0.95^* \] (10)

From the stated risk requirement, we know that \(P \) is 90%. Therefore, from Eq.(10), solving for \(n \) we find that the required sample size 45. In other words if 45 samples are taken, the Type II error will be 0.1. For this test plan, the Type I risk also can be evaluated. It is:

\[\alpha = 1 - R^* = 1 - 0.977^* = 0.649 \] (11)

As it can be seen, the Type I error is too large. What that means is that a lot of false alarms will be generated with this testing plan. Therefore, an appropriate sampling plan (sample size and allowed number of failures) should be defined based on the requirement for both the Type I and the Type II error.

3.2 Non-Parametric Binomial Reliability Demonstration Test

Similar to what was shown in example 3, in reliability demonstration tests one wants to determine the sample size needed in order to demonstrate a specified reliability at a given confidence level. In cases where the available test time is equal to the demonstration time, the following non-parametric binomial equation is widely used in practice:

\[1 - CL = \sum_{i=0}^{n} \binom{n}{i} (1 - R)^i R^{n-i} \] (12)

where \(CL \) is the confidence level, \(f \) is the number of failures, \(n \) is the sample size, and \(R \) is the demonstrated reliability. Given any three of them, the remaining one can be solved for. 1- \(CL \) is the probability of passing the demonstration test. Depending on the value of \(R \) used in Eq. (12), the probability of passing the
test would be either the Type II error or the value of 1-Type I error, as illustrated in Eq.(10) and (11). Example 4 illustrates how this formula can be used.

Example 4: A reliability engineer wants to design a zero failure demonstration test in order to demonstrate a required reliability of 80% at a 90% confidence level. What is the required sample size?

Solution for Example 4: By substituting \(f = 0 \) (since it a zero failure test) Eq.(12) becomes:

\[
1 - CL = R^n
\]

So now the required sample size can be easily solved for any required reliability and confidence level. The result of this test design was obtained using Weibull++ and is:

\[
\eta = \left(\frac{t}{-\ln(R_{ii})} \right)^{1/\beta} = \left(\frac{2000}{-\ln(0.8)} \right)^{1/2} = 4233.87
\]

The above result shows that 11 samples are needed. Note that the “Test time per unit” input is the same as the “Demonstrated at time” value in this example. If those 11 samples are run for the required demonstration time and no failures are observed, then a reliability of 80% with a 90% confidence level has been demonstrated. If the reliability of the system is less than or equal to 80%, the chance of passing this test is less than or equal to \(1 - CL = 0.1 \), which is the Type II error. Therefore, Eq.(12) determines the sample size by controlling for the Type II error.

If 11 samples are used and one failure is observed by the end of the test, then the demonstrated reliability will be less than required. The demonstrated reliability is 68.98% as shown below.

\[
1 - CL = \sum_{i=0}^{n} \binom{n}{i} (1 - R_{ii})^{n-i} R_{ii}^{i} \Rightarrow 0.1 = \sum_{i=0}^{1} \binom{n}{i} (1 - 0.882)^{i} 0.882^{n-i}
\]

The result from Weibull++ is:
The result in the figure above shows that at least 32 samples are needed in order to demonstrate the required reliability.

The following plot shows how the sample size changes as a function of the available test time and number of failures allowed in the test for example 5.

Users can choose the right test plan using the above figure.

3.4 Exponential Chi-Squared Demonstration Test

Since the exponential distribution is frequently used and has a unique feature of being “memory less” (i.e. constant failure rate assumption), the following Chi-squared method is used to design test for systems following the exponential distribution.

\[
\chi^2_{1-CL, f+2} = \frac{2n \cdot T}{MTTF}
\]

(13)

where:

- \(\chi^2_{1-CL, f+2}\): the 1-CL percentile of a Chi-squared distribution with \(2f+2\) degrees of freedom
- \(f\): number of failures
- \(n\): test samples
- \(T\): test duration
- \(MTTF\): mean time to failure

Eq.(13) includes 5 variables: \(CL\), \(f\), \(n\), \(T\) and \(MTTF\). Knowing any four of them, one can solve for the other. For the case of the exponential distribution, demonstrating the reliability is the same as demonstrating the MTTF since:

\[
MTTF = -t / \ln(R)
\]

(14)

Example 6: We desire to design a test to demonstrate a reliability of 85% at time \(t = 500\) hours with a 90% confidence level while only allowing two failures during the test. The test duration is set at 300 hours. How many samples are needed?

Solution for Example 6: First, we need to convert the required reliability to \(MTTF\) using equation (14). It is:

\[
MTTF = -t / \ln(R) = -500 / \ln(0.85) = 3076.57
\]

Using Eqn.(13), the required sample size is:

\[
n = MTTF \cdot \chi^2_{1-CL, f+2} / (2T) = 3076.76 \times 10.6446 / 600 = 54.58
\]

Therefore, we need at least 55 samples in the test. The total accumulated test time is \(T_a = n \times T = 54.58 \times 300 = 16374.46\). This result is shown in the figure below.

As we know when beta equals 1, the Weibull distribution becomes the exponential distribution. All the previously discussed binomial equations also work for the exponential distribution. So, what are the differences between the Chi-squared method and the binomial method? When there are 0 failures in the test, they give exactly the same results. This is because

\[
\chi^2_{1-CL, 2} = -2\ln(1-CL)
\]

The binomial equation becomes:

\[
1-CL = R^n \Rightarrow \chi^2_{1-CL, 2} = \frac{2n \cdot T}{MTTF}
\]

When there are failures, they will give different results since Chi-squared method replaced failed items while binomial method does not.

Example 7: Use the Parametric Binomial method using the same input provided in example 5. Check if the calculated
Sample size is close to the one provided by the Chi-squared method.

Solution for Example 7: The result from Weibull++ is given in the figure below.

The calculated sample size is 56, which is close to the value of 55 that was obtained from the Chi-squared method.

3.5 Non-Parametric Bayesian Test

In reliability tests, in order to better estimate the reliability, Bayesian methods have been used, especially when limited samples are available. If there is prior information on the system’s reliability, or from previous subsystem tests, this information can be utilized in order to design better reliability demonstration tests given the sample constraints. It has been proven by [5] that the reliability, \(R \), is a random variable following a beta distribution in the binomial equation Eq.(15).

\[
1 - CL = \text{Beta}(R, n - f, f + 1) \tag{15}
\]

In general, when a beta distribution is used as the prior distribution for reliability \(R \), the posterior distribution obtained from the Eq.(12) is also a beta distribution. For example, assuming the prior distribution is \(\text{Beta}(R, \alpha_0, \beta_0) \), the posterior distribution for \(R \) is:

\[
1 - CL = \text{Beta}(R, n - f + \alpha_0, f + \beta_0) \tag{16}
\]

Therefore, Eq.(16) can be used for Bayesian reliability demonstration test design. For a random variable \(x \) with beta distribution \(\text{Beta}(x, \alpha_0, \beta_0) \), its mean and variance are:

\[
E(x) = \frac{\alpha_0}{\alpha_0 + \beta_0}; \quad \text{Var}(x) = \frac{\alpha_0 \beta_0}{(\alpha_0 + \beta_0)^2 (\alpha_0 + \beta_0 + 1)} \tag{17}
\]

If the expected value and the variance are known, the parameters \(\alpha_0 \) and \(\beta_0 \) in the beta distribution can be solved by:

\[
\alpha_0 = E(x) \left[\frac{E(x) - E^2(x)}{\text{Var}(x)} - 1 \right]
\]

\[
\beta_0 = (1 - E(x)) \left[\frac{E(x) - E^2(x)}{\text{Var}(x)} - 1 \right] \tag{18}
\]

Example 8: According to the history of a system, it is known that

- The lowest possible reliability is: \(a = 0.87 \)
- The most likely reliability is: \(b = 0.90 \)
- The highest possible reliability is: \(c = 0.99 \)

We need to design a test to demonstrate that the reliability is 90% at a confidence level of 80%. Assume 1 failure is allowed in the test. What is the necessary sample size for the test?

Solution for Example 8: First, based on the available prior information, we can approximate the mean and the variance of the system reliability. They are:

\[
E(R) = \frac{a + 4b + c}{6} = 0.91, \quad \text{Var}(R) = \left(c - a \right)^2 = 0.0004
\]

Using the above two values in Eq.(18) we can get the prior distribution for \(R \). It is a beta distribution \(\text{Beta}(R, \alpha_0, \beta_0) \) with:

\[
\alpha_0 = E(R) \left[\frac{E(R) - E^2(R)}{\text{Var}(R)} - 1 \right] = 185.4125
\]

\[
\beta_0 = (1 - E(R)) \left[\frac{E(R) - E^2(R)}{\text{Var}(R)} - 1 \right] = 18.3375
\]

Using Eq.(16), we can solve for the required sample size \(n \) since \(CL \), and \(f \) are given. The result given by Weibull++ is:

\[
\text{Sample size} = 24
\]

Given the prior information, we need at least 24 samples in the test to demonstrate the required reliability.

When test results for subsystems are available, they can also be integrated in the system reliability demonstration test design [5]. Assume a system has \(k \) subsystems. For each subsystem \(i \) in a system, its reliability can also be modeled using a beta distribution. If there are \(f_i \) failures out of \(n_i \) test samples, \(R_i \) is a beta distribution with the cumulative distribution function as:
\[1 - CL = \text{Beta}(R_i, s_i, f_i + 1) \]

where \(s_i = n_i - f_i \) represents the number of successes. Therefore, the expected value and the variance for \(R_i \) are given by:

\[
E(R_i) = \frac{s_i}{n_i + 1}; \quad \text{Var}(R_i) = \frac{s_i(n_i + 1 - s_i)}{(n_i + 1)^2 (n_i + 2)}
\]

Assuming that all the subsystems form a series configuration, then the expected value and the variance of the system’s reliability \(R \) can then be calculated as follows:

\[
E(R) = \prod_{i=1}^{k} E(R_i) \quad ; \quad \text{Var}(R) = \prod_{i=1}^{k} \left[E^2(R_i) + \text{Var}(R_i) \right] - \prod_{i=1}^{k} \left[E^2(R) \right]
\]

With the mean and variance in Eq.(21), we can get \(\alpha_0 \) and \(\beta_0 \) for the prior distribution of \(R \) using Eq.(18). Once the prior distribution for the system reliability is obtained, we can use Eq.(16) to design the test.

Example 9: Assume a system of interest is composed of three subsystems A, B, and C. Prior information from tests for these three subsystems is given in the table below.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Number of Units (n)</th>
<th>Number of Failures (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3. Subsystem Test Results

Given the above information, in order to demonstrate a system reliability of 90% at a confidence level of 80%, how many samples are needed in the test? Assume the allowed number of failures is 1.

Solution for Example 9: First, using Eq.(20) we can get the mean and the variance for the reliability of each subsystem; then using Eq.(21), we can get the mean and the variance for the system reliability. Once these two values are obtained, Eq.(18) can be used to get \(\alpha_0 \) and \(\beta_0 \) for the prior distribution of \(R \). The result obtained from Weibull++ is given below:

As seen in Figure 15, 49 samples are needed in order to demonstrate the desired reliability.

If the estimated reliability based on the prior information either from expert opinion, previous tests, or subsystem tests is high, the Bayesian method will require fewer samples than the simple non-parametric binomial method. If the estimated reliability based on prior information is low, then more samples will be needed to demonstrate a high reliability. **Therefore, using the Bayesian method will not always lead to a reduced number of required samples. One must be cautious when applying Bayesian methods in data analysis since the validity of the prior information can have a significant effect on the calculated results.**

5. REFERENCES

Determining the Right Sample Size for Your Test: Theory and Application

Huairui (Harry) Guo, Ph.D., CRE, CQE, CRP
Edward Pohl, Ph.D.
Athanasios Gerokostopoulos, CRE, CQE, CRP

Outline
- Introduction
 - The Estimation Approach
 - Sample Size Determination for Life Data Analysis
 - Sample Size Determination for ALT
 - The Risk Control Approach
 - Non-Parametric Binomial
 - Parametric Binomial
 - Exponential Chi-Squared
 - Non-Parametric Bayesian

Introduction
- One of the most critical questions when designing a reliability test is determining the appropriate sample size.
- If sample size is too large, unnecessary costs may be incurred.
- If sample size is too small, the uncertainty of the reliability estimates will be unacceptably high.

The Estimation Approach
Introductory Example
- Consider a pool with black and red marbles.
 - We want to estimate the percent of black marbles.

The Estimation Approach
Introductory Example (cont'd)
- Assume we take a sample of 20 marbles.
- 5 are black and 15 red.
- Therefore our estimate is that the percentage of black marbles in the pool is 25%.
The Estimation Approach
Introductory Example (cont’d)

- Assume that we take another sample of 20 marbles.
- Now 7 are black and 13 red.
- In this case our estimate of black marbles in the pool is 35%.

If this process was repeated over and over again we might notice that 90% of the time the percentage of black marbles is between 5% and 35%.

Therefore the confidence interval at a confidence level of 90% is 5% and 35%.

There is a 10% chance that the estimated value is outside those limits.

Now let’s assume we take a sample of 200 marbles.
- 40 of them are found to be black.
- Therefore the estimated percentage of black marbles is now 20%.

If we take another sample of 200 marbles we might find 30 to be black.
- Therefore the estimated percentage is now 15%.

The Estimation Approach: Setting Requirements

- If we repeat this over and over again we might observe that 90% of the time the percentage of black marbles is between 15% and 25%.
- Since the sample size is larger in this case, the intervals will be narrower than those when a sample of 20 marbles was obtained.

The requirement can be stated in terms of:
- Bound ratio: \(\frac{\hat{B} - \hat{x}_{CL}}{\hat{x}_{UL} - \hat{x}_{CL}} \)
- Bound width: \(\hat{x}_{UL} - \hat{x}_{CL} \)
- \(\hat{x}_{UL} \) and \(\hat{x}_{CL} \) are the upper and lower bounds of a statistic (like reliability) at a confidence level of \(CL \).
- If the statistic is assumed to follow a normal distribution, then the bound ratio is used.
- If the statistic is assumed to follow a lognormal distribution, then the bound ratio is used.

Since larger sample sizes produce narrower confidence intervals, the best sample size can be determined based on the required confidence interval width.
The Estimation Approach
Looking Back at the Marbles Example (Simulation)

- The number of marbles that should be sampled in order to achieve a certain interval width can be determined using simulation.
- Let’s assume that our initial estimate of black marbles in the pool is 20%.
- The simulation procedure is as follows:
 - Generate a random number between 0 and 1.
 - If the number is less than or equal to 0.2, the observation is a black marble.
 - If the number is higher than 0.2, then the observation is a red marble.
 - Repeat this 20 times to generate 20 observations and estimate the percentage of black marbles.
 - Repeat the above steps of generating 20 observations multiple times (e.g., 1,000 times).
 - Rank the 1,000 generated estimates and determine the confidence bounds for a given confidence level (e.g., 90% confidence level).
 - If the desired interval width is not achieved, repeat the steps by generating more observations.
- These bounds are referred to as simulation bounds.

The Estimation Approach
Looking Back at the Marbles Example (Analytical)

- The bound width is:
 \[B = 2k_{\alpha/2} \times \frac{\mu_{\alpha/2} - \mu_{\alpha/2}}{\sqrt{n}} \]
- Given a confidence level of 90%, \(k_{0.05} \) is 1.645.
- Assuming that the required bound width is 8%, the necessary sample size is:
 \[n = \frac{2 \times 0.08^2}{2 \times 1.645^2} \times 100 \times (1.645)^2 \approx 270.55 \]
- 271 samples are needed so that the bound width of the estimated percentage of black marbles is 8%.

The Estimation Approach
Sample Size for Reliability Testing (Analytical)

- For reliability testing, the sample size can be determined in a similar way as in the marbles example.
- In reliability, the metrics of interest with a confidence interval requirement usually are:
 - Reliability at a given time.
 - B1Y life (time by which X% fails).
 - Mean life.
- Reliability metrics are assumed to be log-normally distributed, therefore, the bound ratio is used.
- Again, the sample size can be determined with simulation or analytically.

The Estimation Approach
Sample Size for Reliability Testing (Analytical)

- The bound ratio is:
 \[B = \frac{\hat{R}}{\hat{R}_{UL}} = 2k_{\alpha/2} \sqrt{Var(\ln(\hat{R}))} \]
- \(\ln(\hat{R}) \) is a function of the sample size and can be obtained from the Fisher information matrix.
- Given the required bound ratio and the assumed distribution parameters, we can calculate the required sample size.
The Estimation Approach
Sample Size for Reliability Testing (Simulation)

- The simulation process to design a reliability test is as follows:
 - Determine an assumed failure distribution and its parameters.
 - Generate a random number between 0 and 1.
 - In the reliability equation of the chosen distribution set the generated number as the reliability and solve for the time to failure.
 - Repeat the above steps multiple times in order to obtain a desired sample size of times to failure.
 - Use this sample to fit a failure distribution.
 - Repeat this process for multiple simulation runs to obtain multiple sets of estimated distribution parameters.
 - Rank these parameters in an ascending order and obtain the upper and lower bounds at a given confidence level of the parameters and any reliability metrics of interest.

Example 1: Solution

Using a simulation tool like SimulMatic the engineer can perform simulation and calculate the bound ratio at a 90% confidence for different sample sizes.

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Bound Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As it can be seen the desired bound ratio is achieved for a sample size of at least 25 units.

The Estimation Approach
The Effect of Sample Size on Interval Width

The following plot shows the simulation bounds for a sample size of 5 units.

The Estimation Approach
The Effect of Sample Size on Interval Width (cont’d)

The following plot shows the simulation bounds for a sample size of 40 units.

The Estimation Approach
Sample Size Determination for Accelerated Testing

- The estimation approach is also widely used for ALT.
- For ALT planning, in addition to the required sample size we need to determine:
 - Optimal stress levels.
 - Allocation of units at each stress level.
 - Similar to life data we can use analytical or simulation methods.
 - Simulation is rather cumbersome because, in addition to assumptions about life-stress relationship and distribution, we have to input the optimal stress levels and allocation scheme.
 - Simulation can be used to validate the test plan from the analytical method.
The Estimation Approach
Sample Size for ALT (Analytical)

- For a single stress, the most commonly used test plans are:
 - **The 2 Level Statistically Optimum Plan.** The plan will recommend two stress levels. One will be the maximum allowable stress and the second will be computed so that the variance of the B(X) life is minimized.
 - **The 3 Level Best Standard Plan.** The plan will recommend three equally spaced stress levels with equal allocations. One stress will be the maximum allowable stress and the other two stresses will be computed so that the variance of the B(X) life is minimized.

The Estimation Approach
Example 2

- A reliability engineer wants to design an ALT for an electronic component.
- Initial HALT indicated that temperature is the major stress of concern.
- Use temperature is 300K while design limit is 380K.
- From historical data:
 - After 2 years of operation (or 6,000 hours of actual usage) 1% of units had failed.
 - The beta parameter of the Weibull distribution is 3.

The Estimation Approach
Example 2: Steps to Generate a Test Plan

- **Step 1:** Calculate the eta parameter of the Weibull distribution at the test temperature.
 - \(R(t) = e^{-\frac{t}{\eta_1}} \Rightarrow 0.99 = e^{-\frac{6000}{\eta_1}} \Rightarrow \eta_1 = 27,802.96 \)
 - Since AF=30, at the design limit is 27,802.96 / 30 = 926.765
- **Step 2:** Calculate the expected probability of failure by the end of the test at the usage condition and design limit.
 - \(P_1 = 1 - e^{-\frac{6000}{926.765}} = 0.00014 \)
 - \(P_2 = 1 - e^{-\frac{926.765}{926.765}} = 0.97651 \)

The Estimation Approach
Sample Size for ALT (Analytical cont’d)

- **The 3 Level Best Compromise Plan.** The plan will recommend three equally spaced stress levels using the same approach as the 3 Level Best Standard Plan. The difference is that the proportion of the units to be allocated to the middle stress level is defined by the user.
- **The 3 Level Best Equal Expected Number Failing Plan.** The plan will recommend three equally spaced stress levels using the same approach as the 3 Level Best Standard Plan. The difference is that the proportion of units allocated to each stress level is calculated such that the number of units expected to fail at each level is equal.

The Estimation Approach
Example 2 (cont’d)

- Previous tests have indicated that an acceleration factor of 30 can be achieved close to the design limit.
- The engineer has:
 - 2 months or 1,440 hours available for testing and
 - 2 available chambers.
- The engineer wants to determine:
 - The appropriate temperature that should be set at each chamber.
 - The number of units that should be allocated at each chamber.
- The sample size should be such that the bound ratio for the estimated B10 life is 2 at the 80% confidence level.

The Estimation Approach
Example 2: Steps to Generate a Test Plan (cont’d)

- **Step 3:** Use software to calculate optimal design.
 - The following figure shows the inputs to the test plan.
 - Note that the 2 Level Statistically Optimum Plan was chosen.
The Estimation Approach

Example 2: Steps to Generate a Test Plan (cont’d)

- The following figure shows the output of the test plan.

- The results show that:
 - 68.2% of the units should be allocated at 358.8K, and 31.8% at 380K.
 - This test plan will give minimal variance for the estimated B10 life.

The Estimation Approach

Example 2: Validation Using Simulation

- In order to run simulation we need to specify the life-stress relationship and the failure distribution parameters.
- The Arrhenius model was used which is:
 - $\eta = C \cdot e^{\frac{B}{T}}$
 - where C and B are parameters of the model and T is temperature.
- Given the eta values that were calculated at the use condition and design limit we can calculate:
 - $B = 4.846.7069$
 - $C = 0.002677$

The Estimation Approach

Example 2: Validation Using Simulation (cont’d)

- The bounds on the B10 life are:
 - $B_{10, UCL} = 19,262.27$
 - $B_{10, LCL} = 9,532.1649$
- The bound ratio is:
 - $B = \frac{B_{10, UCL}}{B_{10, LCL}} = \frac{19,262.27}{9,532.1649} = 2.02$
 - This corresponds to the analytical solution.

The Risk Control Approach

Introduction

- The risk control approach is usually used to design reliability demonstration tests.
 - Often times zero-failure tests.
 - Purpose not to find failures but to demonstrate a required reliability.
- In demonstration tests there are two types of risks:
 - Type I risk:
 - The probability that although the product meets the reliability requirements it does not pass the test.
 - Producer's risk or a error.
 - Type II risk:
 - The probability that although the product does not meet the reliability requirements it passes the test.
 - Consumer's risk or a error.
The Risk Control Approach

Introduction

- The following table summarizes the Type I and II errors.

<table>
<thead>
<tr>
<th></th>
<th>When (H_0) is true</th>
<th>When (H_0) is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not reject (H_0)</td>
<td>correct decision (probability = 1 - (\alpha))</td>
<td>Type II error (probability = (\beta))</td>
</tr>
<tr>
<td>Reject (H_0)</td>
<td>Type I error (probability = (\alpha))</td>
<td>correct decision (power = 1 - (\beta))</td>
</tr>
</tbody>
</table>

- The null hypothesis \(H_0 \) is that the product meets the reliability requirement.
- The alternative hypothesis \(H_1 \) is that the product does not meet the reliability requirement.
- With an increase in sample size, both Type I and II errors will decrease.
- Sample size is determined based on controlling Type I, Type II or both risks.

The Risk Control Approach

Example 3

- The voltage reading of a small device is a critical reliability index.
 - If it is higher than 12 volts, the device has failed.
 - It follows a normal distribution with mean of 10 volts and standard deviation of 1 volt.
 - Based on that the reliability of the device is:
 \[R = Pr(\mu < 12) = 0.977 \]
 - Due to degradation of the manufacturing line, the mean will shift with time leading to a decrease in the device’s reliability.

The Risk Control Approach

Example 3 (cont’d)

- Due to this degradation, samples are taken every day to monitor the manufactured devices.
 - If one of the samples fails, the manufacturing line is recalibrated.
- How many samples should be taken so that:
 - There is a 90% chance of detecting a problem.
 - Given that the reliability of the devices has to be higher than 95%.

The Risk Control Approach

Example 3: Solution (cont’d)

- The Type I error, \(\alpha \), can also be calculated as:
 \[\alpha = 1 - R = 1 - 0.97745 = 0.02259 \]
- Therefore, there is a 64.9% chance of the devices failing the test although they meet the reliability requirement.
- Since this is high, a lot of false alarms will be generated.
- A better sampling plan (sample size and allowed number of failures) is needed.

The Risk Control Approach

Non-Parametric Binomial for Demonstration Tests

- In reliability demonstration tests one wants to determine the sample size needed to demonstrate a specified reliability at a given confidence.
- The Non-Parametric Binomial is widely used in practice:
 \[1 - CL = \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (1 - R)^i R^{n-i} \]
 - \(CL \) is the confidence level
 - \(i \) is the number of failures
 - \(n \) is the sample size
 - \(R \) is the demonstrated reliability
The Risk Control Approach
Non-Parametric Binomial for Demonstration Tests

- In the Non-Parametric Binomial equation, time is not a factor.
- The Non-Parametric method is used:
 - For one-shot devices where time is not a factor.
 - For cases when the test time is the same as the time at which we require the demonstrated reliability.

The Risk Control Approach
Example 4

- A reliability engineer wants to design a zero-failure demonstration test.
- The target reliability is 80% at 100 hours.
- The required confidence level is 90%.
- The available test time is 100 hours.
- What is the required sample size?

The Risk Control Approach
Example 4: Solution

- Since it is a zero-failure test, the Non-Parametric Binomial becomes:
 $$1 - CL = 2^n$$

- Based on the required reliability and confidence level, the necessary sample size is:

The Risk Control Approach
Example 4: Solution (cont'd)

- If 11 samples are run for 100 hours and no failures are observed, then a reliability of 80% with a 90% confidence is demonstrated.
- If the reliability of the system is less than 80%, the chance of passing this test is less than:
 $$1 - CL = 10\%$$
 - This is the Type II error.

The Risk Control Approach
Example 4: Solution (cont'd)

- If 1 out of the 11 samples in the test fails, the demonstrated reliability will be less than the requirement.
- In this case it will be:

The Risk Control Approach
Example 4: Solution (cont’d)

- The following figure shows how the demonstrated reliability changes with different numbers of failures and for different sample sizes.
The Risk Control Approach

Parametric Binomial for Demonstration Tests

- As noted before, the Non-Parametric Binomial equation does not consider time.
- However, in most cases the available test time is less than the required demonstration time.
- In order to introduce time to the Binomial equation, some assumptions need to be made regarding the failure distribution of the product.

The Risk Control Approach

Example 5

- We need to design a reliability demonstration test for a new component in order to demonstrate a reliability of 80% at 2,000 hours with a 90% confidence.
- The available test time is 1,500 hours.
- The maximum allowed failures in the test is 1.
- It is assumed that the component follows a Weibull distribution with beta of 2.
- What is the required sample size?

The Risk Control Approach

Example 5: Solution

- Step 1: Determine the Weibull scale parameter:
 \[\eta = \frac{s}{-\ln(0.632)} = \frac{5000}{-\ln(0.632)} = 4233.87 \]

- Step 2: Calculate the reliability at the available test time:
 \[R(t) = e^{-\left(\frac{t}{\eta}\right)^\beta} = e^{-\left(\frac{1500}{4233.87}\right)^2} = 0.882 \]

- Step 3: Use the calculated reliability to determine the required sample size:
 \[1 - CL = \sum_{i=1}^{n} \left(1 - R(t)\right)^{k+1} = \sum_{i=1}^{n} \left(1 - 0.882\right)^{0.882^{i-1}} \]

The Risk Control Approach

Example 5: Solution (cont’d)

- The following figure shows the calculated sample size:

The Risk Control Approach

Example 5: Solution (cont’d)

- The following plot shows the required sample size for different test times and numbers of failures:

The Risk Control Approach

Exponential Chi-Squared Demonstration Test

- The following Chi-squared method can be used for the case of the exponential distribution:
 \[\chi^2 = \frac{2nT}{MTTF} \]

- \(\chi^2 \) is the 1-CL percentile of a chi-squared distribution with \(2f + 1 \) degrees of freedom.
- \(f \) is the number of failures.
- \(n \) is the sample size.
- \(T \) is the test duration.
- \(MTTF \) is the mean time to failure.
The Risk Control Approach
Example 6

- We want to design a test in order to demonstrate:
 - An 85% reliability at 500 hours.
 - With a 90% confidence.
 - Up to 2 failures are allowed in the test.
 - The assumed distribution is exponential.
 - The available test duration is 300 hours.

The Risk Control Approach
Example 6: Solution

- First we need to convert the required reliability to an MTTF metric using:
 \[MTTF = \frac{L}{\ln(R)} = \frac{300}{\ln(0.85)} = 3076.57 \]
- The required sample size is:
 \[n = \frac{MTTF \times CL^2 \times \sigma^2}{2T} = \frac{3076.76 \times 0.6446}{600} = 54.58 \]

The Risk Control Approach
Example 6: Solution (cont’d)

- The total accumulated test time based on the available test time and required sample size is:
 \[T_a = n \times T = 54.58 \times 300 = 16374.66 \]

The Risk Control Approach
Chi-Squared vs. Binomial

- When an exponential distribution is used in the binomial equation, the results will be similar to the Chi-squared method.
- For 0 failures the results will be identical.
- For 1 or more failures the binomial is more accurate since the Chi-squared method is an approximation of the binomial method.

The Risk Control Approach
Example 7

- We want to design a test in order to demonstrate:
 - An 85% reliability at 500 hours.
 - With a 90% confidence.
 - Only up to two failures are allowed in the test.
 - The assumed distribution is exponential.
 - The available test duration is 300 hours.
- Calculations should be done using the binomial method instead of the Chi-squared method.
- Compare the results between the two methodologies.

The Risk Control Approach
Example 7: Solution

- The required sample size of 56 units is close to the 55 samples that were calculated using the Chi-squared method.
The Risk Control Approach

Non-Parametric Bayesian Test

- Bayesian methodology utilizes historical information to improve predictions.
- In reliability testing, Bayesian methods can be beneficial when:
 - Available sample size is small.
 - Prior information on the product's reliability is available.

The Risk Control Approach

Non-Parametric Bayesian Test (cont’d)

- Reliability is a random variable following a beta distribution in the binomial equation.
 - $1 - CL = Beta(R, n - f, f + 1)$
- When a beta distribution is used as a prior for reliability, the posterior distribution from the binomial is also a beta distribution.
- Assuming the prior distribution for reliability is $Beta(R, \alpha_0, \beta_0)$, the posterior distribution is:
 - $1 - CL = Beta(R, n - f + \alpha_0, f + \beta_0)$

The Risk Control Approach

Non-Parametric Bayesian Test (cont’d)

- For a random variable x with beta distribution $Beta(x, \alpha_0, \beta_0)$, its mean and variance are:
 - Mean $\mu = \frac{x_0 \beta_0}{\alpha_0 + \beta_0}$
 - Variance $\mu = \frac{x_0 \beta_0 (\alpha_0 + \beta_0)}{(\alpha_0 + \beta_0 + 1)}$

The Risk Control Approach

Example 8

- Based on prior information on a system, we know that:
 - The lowest possible reliability is $a = 87%$.
 - The most likely reliability is $b = 90%$.
 - The highest possible reliability is $c = 99%$.
- We need to determine sample size in order to:
 - Demonstrate a $90%$ reliability.
 - At the $80%$ confidence level.
 - When only 1 failure is allowed in the test.

The Risk Control Approach

Example 8: Solution

- Based on the prior information we can estimate the mean and variance of the system reliability:
 - $E(R) = \frac{a + b + c}{3} = 0.91$
 - $Var(R) = \frac{(b - a)^2}{6} = 0.0004$
- The prior distribution for R is a beta distribution with:
 - $\alpha_0 = E(R_0) \left[\frac{E(R_0) - f(R_0)}{Var(R_0)} - 1 \right] = 185.4125$
 - $\beta_0 = (1 - E(R_0)) \left[\frac{E(R_0) - f(R_0)}{Var(R_0)} - 1 \right] = 18.3375$
The Risk Control Approach

Example 8: Solution (cont’d)

- The following figure shows the calculated sample size.

![Sample Size Calculation](image)

The Risk Control Approach

Bayesian Test with Subsystem Information (cont’d)

- The expected value and the variance of R_i are:
 - $E(R_i) = \frac{R_i}{n_i}$
 - $\text{Var}(R_i) = \frac{R_i(n_i-1)}{n_i^2(n_i-2)}$

- Assuming that all subsystems are in a series reliability-wise configuration, the expected value and the variance of the system's reliability are:
 - $E(R) = \prod_{i=1}^{n} E(R_i)$
 - $\text{Var}(R) = \prod_{i=1}^{n} [E^2(R_i)] + \sum_{i} \text{Var}(R_i) - \prod_{i=1}^{n} [E^2(R_i)]$

The Risk Control Approach

Example 9

- Assume a system of interest is composed of three subsystems A, B and C.
- The following table shows prior subsystem test results.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Number of Units (n)</th>
<th>Number of Failures (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

- What is the required sample size in order to demonstrate:
 - A system reliability of 90% at an 90% confidence level.
 - With 1 allowed failure in the test.

The Risk Control Approach

Example 9: Solution

- The following figure shows the results of the Bayesian test design.

![Bayesian Test Results](image)

The Risk Control Approach

Bayesian Test with Subsystem Information

- When information for subsystems is available, they can be integrated in the system reliability demonstration test design.
- For each subsystem in a system, its reliability can be modeled using a beta distribution.
- If there are f_i out of n_i test samples, R_i is a beta distribution with a cumulative distribution function:
 - $1 - CL = \text{Beta}(R_i, s_i, f_i + 1)$
 - Where $s_i = n_i - f_i$ is the number of successes.

The Risk Control Approach

Non-Parametric Bayesian vs. Non-Parametric Binomial

- If the estimated reliability based on prior information is high, the Bayesian method will require fewer samples than the binomial method.
- If the estimated reliability based on prior information is low, then more samples will be needed to demonstrate a high reliability.
- One must be very cautious when using any Bayesian methods since the validity of the prior information will have a great effect on the calculated results.
Conclusions

- We discussed different methods in determining sample size.
- The two commonly used approaches are:
 - Estimation approach.
 - Risk control approach.
- If the purpose of a test is to estimate a given reliability metric, then the estimation approach should be used.
- If the purpose of a test is to demonstrate a specified reliability, then the risk control method should be used.

Questions

Thank you for your attention.

Do you have any questions?