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SUMMARY & PURPOSE 
 

Design of Experiments (DOE) is one of the most useful statistical tools in product design and testing. While many 
organizations benefit from designed experiments, others are getting data with little useful information and wasting resources 
because of experiments that have not been carefully designed.  Design of Experiments can be applied in many areas including 
but not limited to: design comparisons, variable identification, design optimization, process control and product performance 
prediction. Different design types in DOE have been developed for different purposes. Many engineers are confused or even 
intimidated by so many options. 

This tutorial will focus on how to plan experiments effectively and how to analyze data correctly. Practical and correct 
methods for analyzing data from life testing will also be provided. 
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1. INTRODUCTION 

The most effective way to improve product quality and 
reliability is to integrate them in the design and manufacturing 
process. Design of Experiments (DOE) is a useful tool that can 
be integrated into the early stages of the development cycle. It 
has been successfully adopted by many industries, including 
automotive, semiconductor, medical devices, chemical 
products, etc. The application of DOE is not limited to 
engineering. Many successful stories can be found in other 
areas. For example, it has been used to reduce administration 
costs, improve the efficiency of surgery processes, and 
establish better advertisement strategies.   

1.1 Why DOE 

DOE will make your life easier. For many engineers, 
applying DOE knowledge in their daily work will reduce lots 
of trouble. Here are two examples of bad experiments that will 
cause trouble.  
Example 1: Assume the reliability of a product is affected by 
voltage. The usage level voltage is 10. In order to predict the 
reliability at the usage level, fifty units are available for 
accelerated life testing. An engineer tested all fifty units at a 
voltage of 25. Is this a good test? 
Example 2: Assume the reliability of a product is affected by 
temperature and humidity. The usage level is 40 degrees 
Celsius and 50% relative humidity. In order to predict the 
reliability at the usage level, fifty units are available for 
accelerated life testing. The design is conducted in the 
following way: 
 

Number of 
Units 

Temperature 
(Celsius) 

Humidity 
(%) 

25 120 95 

25 85 85 

Table 1 – Two Stress Accelerated Life Test 

Will the engineer be able to predict the reliability at the usage 
level with the failure data from this test? 

1.2 What DOE Can Do 

DOE can help you design better tests than the above two 
examples. Based on the objectives of the experiments, DOE 
can be used for the following purposes [1, 2]: 
1. Comparisons. When you have multiple design options, 
several materials or suppliers are available, you can design an 
experiment to choose the best one. For example, in the 
comparison of six different suppliers that provide connectors, 
will the components have the same expected life? If they are 
different, how are they different and which is the best? 
2. Variable Screening. If there are a large number of 
variables that can affect the performance of a product or a 
system, but only a relatively small number of them are 
important, a screening experiment can be conducted to 
identify the important variables. For example, the warranty 
return is abnormally high after a new product is launched. 
Variables that may affect the life are temperature, voltage, 

duty cycle, humidity and several other factors. DOE can be 
used to quickly identify the troublemakers and a follow-up 
experiment can provide the guidelines for design modification 
to improve the reliability.  
3. Transfer Function Exploration. Once a small number of 
variables have been identified as important, their effects on the 
system performance or response can be further explored. The 
relationship between the input variables and output response is 
called the transfer function. DOE can be applied to design 
efficient experiments to study the linear and quadratic effects 
of the variables and some of the interactions between the 
variables.  
4. System Optimization. The goal of system design is to 
improve the system performance, such as to improve the 
efficiency, quality, and reliability. If the transfer function 
between variables and responses has been identified, the 
transfer function can be used for design optimization. DOE 
provides an intelligent sequential strategy to quickly move the 
experiment to a region containing the optimum settings of the 
variables.  
5. System Robustness. In addition to optimizing the 
response, it is important to make the system robust against 
“noise,” such as environmental factors and uncontrolled 
factors. Robust design, one of the DOE techniques, can be 
used to achieve this goal. 

1.3 Common Design Types 

Different designs have been used for different experiment 
purposes. The following list gives the commonly used design 
types.  
1. For comparison 

• One factor design 
2. For variable screening 

• 2 level factorial design 
• Taguchi orthogonal array 
•  Plackett-Burman design 

3. For transfer function identification and optimization 
• Central composite design 
• Box-Behnken design 

4. For system robustness 
• Taguchi robust design 

The designs used for transfer function identification and 
optimization are called Response Surface Method designs. In 
this tutorial, we will focus on 2 level factorial design and 
response surface method designs. They are the two most 
popular and basic designs. 

1.4 General Guidelines for Conducting DOE 

DOE is not only a collection of statistical techniques that 
enable an engineer to conduct better experiments and analyze 
data efficiently; it is also a philosophy. In this section, general 
guidelines for planning efficient experiments will be given. 
The following seven-step procedure should be followed [1, 2]. 
1. Clarify and State Objective. The objective of the 
experiment should be clearly stated. It is helpful to prepare a 
list of specific problems that are to be addressed by the 
experiment.  
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2. Choose Responses. Responses are the experimental 
outcomes. An experiment may have multiple responses based 
on the stated objectives. The responses that have been chosen 
should be measurable.  
3. Choose Factors and Levels. A factor is a variable that is 
going to be studied through the experiment in order to 
understand its effect on the responses. Once a factor has been 
selected, the value range of the factor that will be used in the 
experiment should be determined. Two or more values within 
the range need to be used. These values are referred to as 
levels or settings.  Practical constraints of treatments must be 
considered, especially when safety is involved. A cause-and-
effect diagram or a fishbone diagram can be utilized to help 
identify factors and determine factor levels. 
4. Choose Experimental design. According to the objective 
of the experiments, the analysts will need to select the number 
of factors, the number of level of factors, and an appropriate 
design type. For example, if the objective is to identify 
important factors from many potential factors, a screening 
design should be used. If the objective is to optimize the 
response, designs used to establish the factor-response 
function should be planned. In selecting design types, the 
available number of test samples should also be considered.  
5. Perform the Experiment. A design matrix should be used 
as a guide for the experiment. This matrix describes the 
experiment in terms of the actual values of factors and the test 
sequence of factor combinations. For a hard-to-set factor, its 
value should be set first. Within each of this factor’s settings, 
the combinations of other factors should be tested.  
6. Analyze the Data. Statistical methods such as regression 
analysis and ANOVA (Analysis of Variance) are the tools for 
data analysis. Engineering knowledge should be integrated 
into the analysis process. Statistical methods cannot prove that 
a factor has a particular effect. They only provide guidelines 
for making decisions. Statistical techniques together with good 
engineering knowledge and common sense will usually lead to 
sound conclusions. Without common sense, pure statistical 
models may be misleading. For example, models created by 
smart Wall Street scientists did not avoid, and probably 
contributed to, the economic crisis in 2008.   
7. Draw Conclusions and Make Recommendations. Once the 
data have been analyzed, practical conclusions and 
recommendations should be made. Graphical methods are 
often useful, particularly in presenting the results to others. 
Confirmation testing must be performed to validate the 
conclusion and recommendations.  

The above seven steps are the general guidelines for 
performing an experiment. A successful experiment requires 
knowledge of the factors, the ranges of these factors and the 
appropriate number of levels to use. Generally, this 
information is not perfectly known before the experiment. 
Therefore, it is suggested to perform experiments iteratively 
and sequentially. It is usually a major mistake to design a 
single, large, comprehensive experiment at the start of a study. 
As a general rule, no more than 25 percent of the available 
resources should be invested in the first experiment.  

2. STATISTICAL BACKGROUND 

Linear regression and ANOVA are the statistical methods 
used in DOE data analysis. Knowing them will help you have 
a better understand of DOE. 

2.1 Linear Regression[2] 

A general linear model or a multiple regression model is: 
εβββ ++++= pp XXY ...110    (1) 

Where:  is the response also called output or dependent 
variable.  is the predictor also called input or independent 
variable. 

Y
X i
ε  is the random error or noise, which  is assumed to 

be normally distributed with mean 0 and variance , usually 
noted as . Because 

2σ
),0( 2σN~ε ε  is normally distributed, 

then for a given value of X, Y is also normally distributed and 
.  2)(YVar σ=

From the model, it can be seen that the variation or the 
difference of Y consists of two parts. One is the random part of 
ε . The other is the difference caused by the difference of the 
X values. For example, consider the data in Table 2:  

 
Observation X1 X2 Y Y 

Mean 

1 120 90 300 325 
2 120 90 350 

3 85 95 150 170 
4 85 95 190 

5 120 95 400 415 
6 120 95 430 

Table 2 – Example Data for Linear Regression 

Table 2 has three different combinations of X1 and X2, 
showing at different colors. For each combination, there are 
two observations. Because of the randomness caused by ε , 
these two observations are different although they have the 
same X values. This difference usually is called within-run 
variation. The mean values of Y at the three combinations are 
different too. This difference is caused by the difference of X1 
and X2 and usually is called between-run variation.  

If the between-run variation is significantly larger than the 
within-run variation, it means most of the variation of Y is 
caused by the difference of X settings. In other words, Xs 
significantly affect Y. The difference of Ys caused by the Xs 
are much more significant than the difference caused by the 
noise.  

From Table 2, we have the feeling that the between-run 
variation is larger than the within-run variation. To confirm 
this, statistical methods should be applied. The amount of the 
total variation of Y is defined by the sum of squares: 

( )∑
=

−=
n

i
iT YYSS

1

2   (2) 

Where i  is the ith observed value and Y Y  is the mean of all 
the observations. However, since SST is affected by the 
number of observations, to eliminate this effect, another 
metric called mean squares  is used to measure the normalized 
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variability of Y. 
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Equation (3) is also the unbiased estimator of .  )(YVar
As mentioned before, the total sum of squares can be 

partitioned into two parts: within-run variation caused by 
random noise (called sum of squares of error E ) and the 
between-run variation caused by different values of Xs (called 
sum of squares of regression ). 
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Where: iY  is the predicted value for the ith test. For tests with 
the same X values, the predicted values are the same. 

ˆ

Similar to equation (3), the mean squares of regression 
and the mean squares of error are calculated by: 
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Where: p is the number of Xs.  
When there is more than one input variable, R  can be 

further divided into the variation caused by each variable, such 
as: 

SS

pXXXR SSSSSSSS +++= ...
21

  (7) 

The mean squares of each input variable 
iXMS  is compared 

with E  to test if the effect of  is significantly greater 
than the effect of noise.  

MS iX

The mean squares of regression RMS  is used to measure 
the between-run variance that is caused by predictor Xs. The 
mean squares of error E  represents the within-run variance 
caused by noise. By comparing these two values, we can find 
out if the variance contributed by Xs is significantly greater 
than the variance caused by noise. ANOVA is the method 
used for the comparison in a statistical way.  

MS

2.2 ANOVA (Analysis of Variance) 

The following ratio 

E

R
MS
MS

F =0    (8) 

is used to test the following two hypotheses: 
H0: There is no difference between the variance caused 

by Xs and the variance caused by noise. 
H1: The variance caused by Xs is larger than the variance 

caused by noise. 
Under the null hypothesis, the ratio follows the F distribution 
with degree of freedoms of  and . By applying 
ANOVA to the data for this example, we get the following 
ANOVA table. 

p pn −−1

The third column shows the values for the sum of squares. We 
can easily verify that: 

EXXERT SSSSSSSSSSSS ++=+=
21

       (9) 

The fifth column shows the F ratio of each source. All the 

values are much bigger than 1. The last column is the P value. 
The smaller the P value is, the larger the difference between 
the variance caused by the corresponding source and the 
variance caused by noise.  Usually, a significance level α , 
such as 0.05 or 0.1 is used to compare with the P values.  If a 
P value is less than α , the corresponding source is said to be 
significant at the significance level of α . From Table 3, we 
can see that both variables X1 and X2 are significant to the 
response Y at the significance level of 0.1. 
 

Source of 
Variation 

Degrees 
of 

Freedom 

Sum of 
Squares  

Mean 
Squares 

F 
Ratio 

P 
Value 

Model 2 6.14E+04 3.07E+04 36.86 0.0077 

  X1 1 6.00E+04 6.00E+04 72.03 0.0034 

  X2 1 8100 8100 9.72 0.0526 

Residual 3 2500 833.3333     

Total 5 6.39E+04       

Table 3 – ANOVA Table for the Linear Regression Example 

Another way to test whether or not a variable is 
significant is to test whether or not its coefficient is 0 in the 
regression model. For this example, the linear regression 
model is: 

εβββ +++= 21110 XXY            (10) 
If we want to test whether or not 01 =β , we can use the 
following hypothesis: 

H0:  01 =β  
Under this null hypothesis, the statistic is a t  distribution: 

)( 1

1
0 β

β
se

T =                       (11) 

)( 1βSe  is the standard error of 1β  that is estimated from the 
data. The t test results are given in Table 4.  
 

Term Coefficient Standard Error T Value P Value 

Intercept -2135 588.7624 -3.6263 0.0361 

X1 7 0.8248 8.487 0.0034 

X2 18 5.7735 3.1177 0.0526 

Table 4 – Coefficients for the Linear Regression Example 

Table 3 and Table 4 give the same P values. 
With linear regression and ANOVA in mind, we can start 

discussing DOE now.  

3. TWO LEVEL FACTORIAL DESIGNS 

Two level factorial designs are used for factor screening. 
In order to study the effect of a factor, at least two different 
settings for this factor are required.  This also can be explained 
from the viewpoint of linear regression. To fit a line, two 
points are the minimal requirement. Therefore, the engineer 
who tested all the units at a voltage of 25 will not be able to 
predict the life at the usage level of 10 volts. With only one 
voltage value, the effect of voltage cannot be evaluated.  
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3.1 Two Level Full Factorial Design 

When the number of factors is small and you have the 
resources, a full factorial design should be conducted.  Here 
we will use a simple example to introduce some basic 
concepts in DOE.  

For an experiment with two factors, the factors usually are 
called A and B.  Uppercase letters are used for factors. The 
first level or the low level is represented by -1, while the 
second level or the high level is represented by 1. There are 
four combinations of a 2 level 2 factorial design. Each 
combination is called a treatment. Treatments are represented 
by lowercase letters. The number of test units for each 
treatment is called the number of replicates. For example, if 
you test two samples at each treatment, the number of 
replicates is 2. Since the number of replicates for each factor 
combination is the same, this design is also balanced. A two 
level factorial design with k factors usually is written as  
design and read as “2 to the power of 3 design” or “2 to the 3 
design.” For a 2  design, the design matrix is: 

k2

2

 
 

Treatment 
Factors 

Response 
A B 

-1 -1 -1 20 

a 1 -1 30 

b -1 1 25 

ab 1 1 35 

Table 5 – Treatments for 2 Level Factorial Design 

This design is orthogonal. This is because the sum of the 
product of A and B is zero, which is 

. An orthogonal 
design will reduce the estimation uncertainty of the model 
coefficients.   

0)11()11()11()11( =×+×−+−×+−×−

The following linear regression model is used for the 
analysis: 

εββββ ++++= 211222110 XXXXY
X

        (12) 
Where: 1  is for factor A;  is for factor B; and their 
interaction is represented by 21 .  The effects of A and B 
are called main effects. The effects of their interaction are 
called two-way interaction effects. These three effects are the 
three sources for the variation of Y. Since equation (12) is a 
linear regression model, the ANOVA method and the t-test 
given in Section 2 can be used to test whether or not one effect 
is significant.  

2X
XX

For a balanced design, a simple way to calculate the effect 
of a factor is to calculate the difference of the mean values of 
the response at its high and low setting. For example, the 
effect of A can be calculated by: 

10
2

2520
2

3530
=

+
−

+
=

Aat  Avg. - Aat  Avg. A  ofEffet lowhigh=

32

32

     (13) 

3.2 Two Level Fractional Factorial Design 

When you increase the number of factors, the number of 

test units will increase quickly. For example, to study 7 
factors, 128 units are needed. In reality, responses are affected 
by a small number of main effects and lower order 
interactions. Higher order interactions are relatively 
unimportant. This statement is called the sparsity of effects 
principle. According to this principle, fractional factorial 
designs are developed. These designs use fewer samples to 
estimate main effects and lower order interactions, while the 
higher order interactions are considered to have negligible 
effects.  

Consider a  design. 8 test units are required for a full 
factorial design. Assume only 4 test units are available 
because of the cost of the test. Which 4 of the 8 treatments 
should you choose? A full design matrix with all the effects 
for a design is: 

 
Order A B AB C AC BC ABC 

1 -1 -1 1 -1 1 1 -1 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

4 1 1 1 -1 -1 -1 -1 

5 -1 -1 1 1 -1 -1 1 

6 1 -1 -1 1 1 -1 -1 

7 -1 1 -1 1 -1 1 -1 

8 1 1 1 1 1 1 1 

Table 6 – Design Matrix for a Design 32

If the effect of ABC can be ignored, the following 4 
treatments can be used in the experiment.  
 

Order A B AB C AC BC ABC 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

5 -1 -1 1 1 -1 -1 1 

8 1 1 1 1 1 1 1 

Table 7 –Fraction of the Design Matrix for a Design 32

132 −

In Table 7, the effect of ABC cannot be estimated from the 
experiment because it is always at the same level of 1. Since 

Table 7 uses only half of the treatments from the full factorial 
design in Table 6, it is represented by  and read as “2 to 

the power of 3 minus 1 design” or “2 to the 3 minus 1 design.”  
From Table 7, you will also notice that some columns 

have the same values. For example, column AB and C are the 
same. Using equation (13) to calculate the effect of AB and C, 
we will end up with the same procedure and result. Therefore, 
from this experiment, the effect of AB and C cannot be 
distinguished because they change with the same pattern. In 
DOE, effects that cannot be separated from an experiment are 
called confounded effects or aliased effects. A list of aliased 
effects is called the alias structure. For the design of Table 7, 
the alias structure is: 

[I]=I+ABC; [A]=A+AC; [B]=B+BC; [C]=C+AB 
Where: I is the effect of the intercept in the regression model, 
which represents the mean value of the response. The alias for 
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I is called the defining relation. For this example, the defining 
relation is written as I = ABC. In a design, I may be aliased 
with several effects. The order of the shortest effects that 
aliased with I is the “resolution” of this design. 

From the alias structure, we can see that main effects are 
confounded with 2-way interactions. For example, the 
estimated effect for C in fact is the combination effect of C 
and AB.   

Checking Table 7, we can see it is a full factorial design if 
we have only factor A and B. Therefore, A and B usually are 
called basic factors and the full factorial design for them is 
called the basic design. A fractional factorial design is 
generated from its basic design and basic factor. For this 
example, the values for factor C are generated from the values 
of the basic factors A and B using the relation C=AB. Usually 
AB is called the factor generator for C.  

By now, it should be clear that the design given in Table 1 
at the beginning of this tutorial is not a good design. If you 
check the design in terms of coded value, the answer is 
obvious. Table 8 shows the design again. 

 
Number of 

Units 
Temperature 

(Celsius) 
Humidity 

(%) 

25 120 (1) 95 (1) 

25 85 (-1) 85 (-1) 

Table 8 – Two Stress Accelerated Life Test (Coded Value) 

In this design, temperature and humidity are confounded. In 
fact, to study the effect of two factors, at least three different 
settings are required. From the linear regression point of view, 
at least three unique settings are needed to solve three 
parameters: the intercept, the effect of factor A and the effect 
of factor B.  If their interaction is also to be estimated, four 
different settings should be used. Many DOE software 
packages can generate a design matrix for you according to 
the number of factors and the level of factors. It will help you 
avoid bad designs such as the one given in Table 8.  

3.3 An Example of  a Fractional Factorial Design 

Assume an engineer wants to identify the factors that 
affect the yield of a manufacturing process for integrated 
circuits. By following the DOE guidelines, five factors are 
brought up and a two level fractional factorial design is 
decided to be used [1]. The five factors and their levels are 
given in Table 9. 

 
Factor Name Unit Low 

(-1) 
High 
(1) 

A Aperture Setting  small large 

B Exposure Time minutes 20 40 

C Develop Time seconds 30 45 

D Mask Dimension  small large 

E Etch Time minutes 14.5 15.5 

Table 9 –Factor Settings for a Five Factor Experiment 

With five factors the total number of runs required for a 
full factorial is . Running all of the 32 combinations is 

too expensive for the manufacturer. At the initial 
investigation, only main effects and two factor interactions are 
of interest, while higher order interactions are considered to be 
unimportant. It is decided to carry out the investigation using 
the  design, which requires 16 runs. The defining relation 
is I=ABCDE, or in other words, the generator for factor E is 
E=ABCD. Table 10 gives the experiment data. 

3225 =

152 −

 
Run Order A B C D E Yield 

1 Large 20 30 Large 15.5 10 
2 Large 20 45 Large 14.5 21 
3 Small 40 45 Small 15.5 45 
4 Small 20 45 Small 14.5 16 
5 Large 40 30 Small 15.5 52 
6 Large 40 45 Small 14.5 60 
7 Small 40 30 Large 15.5 30 
8 Small 20 45 Large 15.5 15 
9 Large 20 30 Small 14.5 9 
10 Small 40 30 Small 14.5 34 
11 Small 20 30 Small 15.5 8 
12 Large 40 30 Large 14.5 50 
13 Small 40 45 Large 14.5 44 
14 Small 20 30 Large 14.5 6 
15 Large 20 45 Small 15.5 22 
16 Large 40 45 Large 15.5 63 

Table 10 –Design Matrix and Results 

Since the design has only 16 unique factor combinations, it 
can be used to estimate only 16 parameters in the linear 
regression model. If we include all main and 2-way 
interactions in the model, we get the following ANOVA table.  
 

Source of 
Variation DF Sum of 

Squares 
Mean 

Squares F  P 
Value 

Model 15 5775.4375 385.0292 - - 
A 1 495.0625 495.0625 - - 
B 1 4590.0625 4590.0625 - - 
C 1 473.0625 473.0625 - - 
D 1 3.0625 3.0625 - - 
E 1 1.5625 1.5625 - - 

AB 1 189.0625 189.0625 - - 
AC 1 0.5625 0.5625 - - 
AD 1 5.0625 5.0625 - - 
AE 1 5.0625 5.0625 - - 
BC 1 1.5625 1.5625 - - 
BD 1 0.0625 0.0625 - - 
BE 1 0.0625 0.0625 - - 
CD 1 3.0625 3.0625 - - 
CE 1 0.5625 0.5625 - - 
DE 1 7.5625 7.5625 - - 

Residual 0     
Total 15 5775.4375    

Table 11 –ANOVA Table with All Effects 
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There are no F ratio and P values in the above table. This is 
because there are no replicates in this experiment when all the 
effects are considered. Therefore, there is no way to estimate 
the error term in the regression model. This is why the SSE 
(Sum of Squares of Error), labeled as Residual  in Table 11, is 
0. Without SSE, the estimation of the random error, how can 
we test whether or not an effect is significant compared to 
random error? Don’t panic. Statisticians have already 
developed methods to deal with this situation. When there is 
no error in a screening experiment, Lenth’s method can be 
used to identify significant effects. Lenth’s method assumes 
that all the effects should be normally distributed with a mean 
of 0, given the hypothesis that they are not significant. If any 
effects are significantly different from 0, they should be 
considered significant. So we can check the normal probability 
plot for effects. 
 

 
Figure 1-Effect Probability Plot Using Lenth’s Method 

From Figure 1, the main effect A, B, C and the 2-way 
interaction AB are identified as significant at a significance 
level of 0.1. Since the rest of the effects are not significant, 
they can be treated as noise and used to estimate the sum of 
squares of error. In DOE, it is a common practice to pool non-
significant effects into error. With only A, B, C and AB in the 
model, we get the following ANOVA table. 
 

Source of 
Variation DF Sum of 

Squares 
Mean 

Squares  
F  

Ratio P Value 

Model 4 5747.25 1436.8125 560.7073 1.25E-12 

  A 1 495.0625 495.0625 193.1951 2.53E-08 

  B 1 4590.0625 4590.0625 1791.244 1.56E-13 

  C 1 473.0625 473.0625 184.6098 3.21E-08 

  AB 1 189.0625 189.0625 73.7805 3.30E-06 

Residual 11 28.1875 2.5625     

 Lack of Fit 3 9.6875 3.2292 1.3964 0.3128 

  Pure Error 8 18.5 2.3125     

Total 15 5775.4375       

Table 12 –ANOVA Table with Significant Effects 

From Table 12, we can see that effects A, B, C and AB are 
indeed significant because their P values are close to 0.  

Once the important factors have been identified, follow-
up experiments can be conducted to optimize the process. 
Response Surface Methods are developed for this purpose. 

4. RESPONSE SURFACE METHODS (RSM) 

Response surface methods (RSM) are used to estimate the 
transfer functions at the optimal region. The estimated 
function is then used to optimize the responses. The quadratic 
model is the model used in RSM. Similar to the factorial 
design, linear regression and ANOVA are the tools for data 
analysis in RSM. Let’s use a simple example to illustrate this 
type of design. 

4.1 Initial Investigation 

Assume the yield from a chemical process has been found 
to be affected by two factors [1]:  
• Reaction Temperature 
• Reaction Time 
The current operating conditions of 230 Fahrenheit and 65 
minutes give a yield of about 35%. The engineers decide to 
explore the current conditions in the range [L=225, H=235] 
Fahrenheit and [L=55, H=75] minutes to see how the 
temperature and time affect the yield. The design matrix is: 
 

Std. 
Order 

Point 
Type 

A: 
Temperature  

B: 
Reaction Time Yield (%) 

1 1 -1 -1 33.95 

2 1 1 -1 36.35 

3 1 -1 1 35 

4 1 1 1 37.25 

5 0 0 0 35.45 

6 0 0 0 35.75 

7 0 0 0 36.05 

8 0 0 0 35.3 

9 0 0 0 35.9 

Table 13-Design Matrix for the Initial Experiment 

Table 13 is the design matrix in coded values where -1 is the 
lower level and 1 is the higher level. For a given actual value 
for a numerical factor, its corresponding coded value can be 
calculated by: 

Low andHigh Between  Range  theof Half
Low andHigh  of Value Middle-Value Actual   valueCoded =   (13) 

In Table 13, there are several replicated runs at the setting 
of (0, 0). These runs are called center points. Center points 
have the following two uses.  
• To estimate random error. 
• To check whether or not the curvature is significant. 
At least five center points are suggested in an experiment.  

When we analyze the data in Table 13, we get the 
ANOVA table below. 
From Table 14, we know curvature is not significant. 
Therefore, the linear model is sufficient in the current 
experiment space. The linear model that includes only 
significant effects is: 

21 4875.01625.16375.35 XXY ++=   (14) 
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Equation (14) is in terms of coded value. We can see both 
factors have a positive effect to the yield since their 
coefficients are positive. To improve the yield, we should 
explore the region with factor values larger than the current 
operation condition. There are many directions we can move 
to increase the yield, but which one is the fastest lane to 
approach the optimal region? By checking the coefficient of 
each factor in equation (14), we know the direction should be 
(1.1625, 0.4875). This also can be seen from the contour plot 
in Figure 2. 

 

Source of 
Variation DF Sum of 

Squares  
Mean 

Squares  F Ratio P Value 

Model 4 6.368 1.592 16.4548 0.0095 

  A 1 5.4056 5.4056 55.8721 0.0017 

  B 1 0.9506 0.9506 9.8256 0.035 

  AB 1 0.0056 0.0056 0.0581 0.8213 

  Curvature 1 0.0061 0.0061 0.0633 0.8137 

Residual 4 0.387 0.0967     

Total 8 6.755       

Table 14-ANOVA Table for the Initial Experiment 

 
Figure 2--Contour Plot of the Initial Experiment 

Step 

Factor Levels 
Yield 
(%) Coded Actual 

A B A B 
Current Operation 0 0 230 65 35 

1 2.4 1 242 75 36.5 

2 4.8 2 254 85 39.35 

3 7.2 3 266 95 45.65 

4 9.6 4 278 105 49.55 

5 12 5 290 115 55.7 

6 14.4 6 302 125 64.25 

7 16.8 7 314 135 72.5 

8 19.2 8 326 145 80.6 

9 21.6 9 338 155 91.4 

10 24 10 350 165 95.45 
11 26.4 11 362 175 89.3 

12 28.8 12 374 185 87.65 

Table 15-Path of Steepest Ascent 

From Figure 2, we know the fastest lane to increase yield 
is to move along the direction that is perpendicular to the 

contour lines. This direction is (1.1625, 0.4875), or about (2.4, 
1) in terms of normalized scale. Therefore, if 1 unit of X2 is 
increased, 2.39 units of X1 should be used in order to keep 
moving on the steepest ascent direction. To convert the code 
values to the actual values, we should use the step size of (12 
degree, 10 mins) for factor A and B. The table above gives the 
results for the experiments conducted along the path of 
steepest ascent. 

From Table 15, it can be seen that at step 10, the factor 
setting is close to the optimal region. This is because the yield 
decreases on either side of this step. The region around setting 
of (350, 165) requires further investigation. Therefore, the 
analysts will conduct a factorial design with the center 
point of (350, 165) and the range of [L=345, H=355] for factor 
A (temperature) and [L=155, H=175] for factor B (reaction 
time).  The design matrix is given in Table 16. 

22

 
Std. 

Order
Point 
Type

A:Temperature 
(F) 

B:Reaction Time 
(min) 

Yield 
(%) 

1 1 345 155 89.75 

2 1 355 155 90.2 

3 1 345 175 92 

4 1 355 175 94.25 

5 0 350 165 94.85 

6 0 350 165 95.45 

7 0 350 165 95 

8 0 350 165 94.55 

9 0 350 165 94.7 

Table 16-Factorial Design around the Optimal Region 

The ANOVA table for this data is: 
 

Source of 
Variation DF Sum of 

Squares  
Mean 

Squares  F Ratio P 
Value 

Model 4 37.643 9.4107 78.916 5E-04 

  A 1 1.8225 1.8225 15.283 0.017 

  B 1 9.9225 9.9225 83.208 8E-04 

  AB 1 0.81 0.81 6.7925 0.06 

  Curvature 1 25.088 25.088 210.38 1E-04 

Residual 4 0.477 0.1193     

Total 8 38.12       

Table 17-ANOVA for the Experiment at the Optimal Region 

Table 17 shows curvature is significant at this experiment 
region. Therefore, the linear model is not enough for the 
relationship between factors and response. A quadratic model 
should be used instead. An experiment design that is good for 
the quadratic model should be used for further investigation. 
Central Composite Design (CCD) is one of these designs.  

4.2 Optimization Using RSM 

Table 17 is the 2-level factorial design at the optimal 
region. CCD is build based on this factorial design and used to 
estimate the parameters for a quadratic model such as: 

   

00 1x
2x

ŷ

2011 Annual RELIABILITY and MAINTAINABILITY Symposium Guo & Mettas – 7 



εββββββ ++++++= 2112
2
222

2
11122110 XXXXXXY  (15)   

 In fact, a CCD can be directly augmented from a regular 
factorial design. The augmentation process is illustrated in 
Figure 3.  

+

 
Figure 3-Augmnent a Factorial Design to CCD 

Points outside the rectangle in Figure 3 are called axial points 
or start points. By adding several center points and axial 
points, a regular factorial design is augmented to a CCD. In 
Figure 3, we can see there are five different values for each 
factor. So CCD can be used to estimate the quadratic model in 
equation (15).  

Several methods have been developed to calculateα to 
make the CCD have special properties such that the designed 
experiment can better estimate model parameters or can better 
explore the optimal region. The commonly used method to 
calculate α  is: 

4/1
)(2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

−

s

f
fk

n
n

α   (16) 

Where: nf   is the number of replicates of the runs in the 
original factorial design. ns is the number of replicates of the 
runs at the axial points. 2k-f represents the original factorial or 
fractional factorial design.  

 
Std. Order Point 

Type 
A:Temperature 

(F) 
B:Reaction 
Time (min) Yield (%) 

1 1 345 155 89.75 

2 1 355 155 90.2 

3 1 345 175 92 

4 1 355 175 94.25 

5 0 350 165 94.85 

6 0 350 165 95.45 

7 0 350 165 95 

8 0 350 165 94.55 

9 0 350 165 94.7 

10 -1 342.93 165 90.5 

11 -1 357.07 165 92.75 

12 -1 350 150.86 88.4 

13 -1 350 179.14 92.6 

Table 18-CCD around the Optimal Region 

We use equation (15) to calculate α  for our example. So 
.414.1=α  Since we already have five center points in the 

factorial design at the optimal region, we only need to add 
start points to have a CCD.  The complete design matrix for 
the CCD is:shown in Table 18.  The last 5 runs in the above 
table are added to the previous factorial design.  The fitted 
quadratic model is: 

21
2
2

2
121 45.008.252.153.174.091.94 XXXXXXY +−−++= (16) 

The ANOVA table for the quadratic model is: 
 

Source of 
Variation DF Sum of 

Squares  
Mean 

Squares  F Ratio P Value 

Model 5 65.0867 13.0173 91.3426 3.22E-06

  A 1 4.3247 4.3247 30.3465 0.0009 

  B 1 18.7263 18.7263 131.4022 8.64E-06

  AB 1 0.81 0.81 5.6838 0.0486 

  AA 1 16.0856 16.0856 112.8724 1.43E-05

  BB 1 30.1872 30.1872 211.8234 1.73E-06

Residual 7 0.9976 0.1425     

 Lack of Fit 3 0.5206 0.1735 1.4551 0.3527 

 Pure Error 4 0.477 0.1193     

Total 12 66.0842       

Table 19-ANOVA Table for CCD at the Optimal Region 

As mentioned before, the model for CCD is used to 
optimize the process. Therefore, the accuracy of the model is 
very important. From Table 19, the Lack of Fit test, we see the 
P value is relatively large. It means the model can fit the data 
well. The Lack of Fit residual is the estimation of the 
variations of the terms that are not included in the model. If its 
amount is close to the pure error, which is the within-run 
variation, it can be treated as part of the noise. Another way to 
check the model accuracy is to check the residual plots.  

Through the above diagnostic, we found the model is 
adequate and we can use it to identify the optimal factor 
settings. The optimal settings can be found easily by taking the 
derivative of each factor from equation (16) and setting them 
to 0. Many software packages can do optimization. The 
following results are from DOE++ from ReliaSoft [3]. 

 

 
 Figure 4-Optimal Solution for the Chemical Process 

Figure 4 shows how the response changes with each 
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factor. The red dashed line points to the optimal value of each 
factor. we can see that the optimal settings are 351.5 degrees 
Fahrenheit for temperature and 169 minutes for the reaction 
time. At this setting, the predicted yield is 95.3%, which is 
much better than the yield at the current condition (about 
35%). 

5. DOE FOR LIFE TESTING 

When DOE is used for life testing, the response is the life 
or failure time. However, because of the cost, time or other 
constraints, you may not have observed values of life for some 
test units. They are still functioning at the time when the test 
ends. The end time of the test is called the suspension time for 
the units that are not failed. Obviously, this time is not their 
“life.” Should the suspension time be treated as the life time in 
order to analyze the data? In this section, we will discuss the 
correct statistical method for analyzing the data for life testing. 
First, let’s explain some basic concepts in life data analysis. 

5.1 Data Type for Life Test 

When the response is life, there are two types of data 
• Complete Data 
• Censored Data 

o Right Censored (Suspended) 
o Interval Censored 
If a test unit is failed during the test and the exact failure 

time is known, the failure time is called complete data.  
If a test unit is failed and you don’t know the exact failure 

time -- instead, you know the failure occurs within a time 
range -- this time range is called interval data.  

If a unit does not fail in the test, the end time of the test of 
the unit is called right censored data or suspension data.  

Obviously, ignoring the censored data or treating them as 
failure times will underestimate the system reliability. 
However, in the use of the linear regression and ANOVA, an 
exact value for each observation is required. Therefore, 
engineers have to tweak the censored data in order to use 
linear regression and ANOVA. A simple way to tweak the 
data is to use the center point of the interval data as the failure 
time, and treat the suspension units as failed.  

Even with the modification of the original data, another 
issue may still exist. In the using of linear regression and 
ANOVA, the response is assumed to be normally distributed. 
The F and T tests are established based on this normal 
distribution assumption. However, life time usually is not 
normally distributed. 

Given the above reasons, correct analysis methods for 
data from life testing are needed.  

5.2 Maximum Likelihood Estimation and Likelihood Ratio 
Test [2] 

Maximum Likelihood Estimation (MLE) can estimate 
model parameters to maximize the probability of the 
occurrence of an observed data set. It has been used 
successfully to handle different data types, such as complete 
data, suspensions and interval data. Therefore, we will use 
MLE to estimate the model parameters for life data from 

DOE. 
Many distributions are used to describe lifetimes. The 

three most commonly used are [4]:  
• Weibull distribution with probability density function 

(pdf): 
β
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• Lognormal distribution with pdf: 
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• Exponential distribution with pdf: 
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Assume there is only one factor (in the language of DOE), or 
stress (in the language of accelerated life testing) that affects 
the lifetime of the product. The life distribution and factor 
relationship can be described using the following graph. 

 
Figure 5-pdf at Different Stress/Factor Levels 

Figure 5 shows that life decreases when a factor is changed 
from the low level to the high level. The pdf curves have the 
same shape while only the scale of the curve changes. The 
scale of the pdf is compressed at the high level. It means the 
failure mode remains the same, only the time of occurrence 
decreases at the high level. Instead of considering the entire 
scale of the pdf, a life characteristic can be chosen to represent 
the curve and used to investigate the effect of potential factors 
on life. The life characteristics for the three commonly used 
distributions are: 
• Weibull distribution: η  
• Lognormal distribution: μ  
• Exponential distribution: m  
The life-factor relationship is studied to see how factors affect 
life characteristic. For example, a linear model can be used as 
the initial investigation for the relationship: 

......' 211221110 +++++= XXXX ββββμ       (20) 
Where: )ln(' ημ =  for Weibull; μμ ='  for lognormal and  

)mln('=μ  for exponential.  
Please note that in equation (20) a logarithmic 
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transformation is applied to the life characteristics of the 
Weibull and exponential distributions. One of the reasons is 
because η  and  can take only positive values.   m

To test whether or not one effect in equation (20) is 
significant, the likelihood ratio test is used: 

model) full(
)removedk effect (ln2)(effect 

L
LkLR −=          (21) 

Where L() is the likelihood value. LR follows a chi-squared 
distribution if effect k is not significant.  

If effect k is not significant, whether or not it is removed 
from the full model of equation (20) will not affect the 
likelihood value much. It means the value of LR will be close 
to 0. Otherwise, if the LR value is very large, it means effect k 
is significant.   

5.3 Life Test Example 

Consider an experiment to improve the reliability of 
fluorescent lights [2]. Five factors A-E are investigated in the 
experiment. A  design with factor generators D=AC and 
E=BC is conducted. The objective is to identify the significant 
effects that affect the reliability. Two replicates are used for 
each treatment. The test ends at the 20th day. Inspections are 
conducted every two days. The experiment results are given in 
Table 20. 

252 −

 
Run A B C D E Failure Time 

1 -1 -1 -1 -1 -1 (14,16) 20+ 

2 -1 -1 1 1 1 (18,20) 20+ 

3 -1 1 -1 -1 1 (8,10) (10, 12) 

4 -1 1 1 1 -1 (18,20) 20+ 

5 1 -1 -1 1 -1 20+ 20+ 

6 1 -1 1 -1 1 (12,14) 20+ 

7 1 1 -1 1 1 (16,18) 20+ 

8 1 1 1 -1 -1 (12,14) (14, 16) 

Table 20- Data for the Life Test Example 

20+ means that the test unit was still working at the end of the 
test. So this experiment has suspension data. (14, 16) means 
that failure occurred at a time between the 14th and the 16th 
day. So this experiment also has interval data. The Weibull 
model is used as the distribution for the life of the fluorescent 
lights. The likelihood ratio test table is given below.  
 

Model Effect DF Ln(LKV) LR P 
Value 

Reduced A 1 -20.7181 3.1411 0.0763 

  B 1 -24.6436 10.9922 0.0009 

  C 1 -19.2794 0.2638 0.6076 

  D 1 -25.7594 13.2237 0.0003 

  E 1 -21.0727 3.8504 0.0497 

Full   7 -19.1475     

Table 21- LR Test Table for the Life Test Example 

Table 21 has a layout that is similar to the ANOVA table. This 

makes it easy to read for engineers who are familiar with 
ANOVA. From the P value column, we can see factor A, B, D 
and E are important to the product life. The estimated factor-
life relationship is: 

ED
CBA

1166.02477.0
0294.02256.01052.09959.2)ln(

+−
−−+=η

    (22) 

The estimated shape parameter β for the Weibull distribution 
is 7.27. 

For comparison, the data was also analyzed using 
traditional linear regression and the ANOVA method. To 
apply linear regression and ANOVA, the data set was 
modified by using the center points as the failure time for 
interval data and treating the suspensions as failures. Results 
are given below. 

 
Source of 
Variation DF Sum of 

Squares  
Mean 

Squares  F Ratio P Value 

Model 5 143.3125 28.6625 4.2384 0.025 

  A 1 1.5625 1.5625 0.2311 0.6411 

  B 1 33.0625 33.0625 4.8891 0.0515 

  C 1 3.0625 3.0625 0.4529 0.5162 

  D 1 95.0625 95.0625 14.0573 0.0038 

  E 1 10.5625 10.5625 1.5619 0.2398 

Residual 10 67.625 6.7625     

Total 15 210.9375       

Table 23- ANOVA Table for the Life Test Example 

In Table 23, only effects B and D are showing to be 
significant. The estimated linear regression model is: 

ED
CBAY

8127.04375.2
4375.04375.13125.09375.16
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  (23) 

Comparing the results in Tables 22 and 23, we can see 
that they are quite different. The linear regression and 
ANOVA method failed to identify A and E as important 
factors at the significance level of 0.1.  

6. CONCLUSION 

In this tutorial, simple examples were used to illustrate the 
basic concepts in DOE. Guidelines for conducting DOE were 
given. Three major topics were discussed in detail: 2-level 
factorial design, RSM and DOE for life tests.  

Linear regression and ANOVA are the important tools in 
DOE data analysis. So, they are emphasized. For DOE 
involving censored data, the better method of MLE and 
likelihood ratio test should be used.  

DOE involves many different statistical methods. Many 
useful techniques, such as blocking and randomization, 
random and mixed effect model, model diagnostic, power and 
sample size, measurement system study, RSM with multiple 
responses, D-optimal designs, Taguchi orthogonal array, 
Taguchi robust designs, mixture designs and so on are not 
covered in this tutorial [1, 2, 5, 6]. However, with the basic 
knowledge of this tutorial, readers should be able to learn most 
of them easily.  
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