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SUMMARY & CONCLUSIONS 

Making accurate warranty predictions is challenging. It 
becomes even more challenging when products are operated 
under random stresses and random usages. Traditional method 
only uses the average values of these random variables for 
warranty prediction. The randomness of the variables is 
ignored, which may result in inaccurate results. This paper 
presents methods to solve this issue. Solutions for two 
different situations are discussed. In the first situation, only 
random stresses are the major concern. In the second situation, 
both random stresses and random customer usages are 
considered. Two analytical solutions, the exact and the 
approximated solution, are provided for each case. The 
comparison shows that, although they are simple to use, 
approximated solutions can be very different from the exact 
results. In this paper, not only the mean value of the warranty 
prediction, but also the variances and intervals of the 
prediction are calculated. This is much better because interval 
estimate provides more information than a simple point 
estimate. The proposed methods can be applied to many 
industries such as electronic, automobile and home appliance 
companies.  

1 INTRODUCTION 

Warranty prediction is one of the most important issues in 
reliability engineering.  In the prediction of warranty returns, 
operating stresses and customer usage data must be accounted 
for [1]. Usually, nominal or average values of the operating 
stresses are used. However, stresses are often not constant. 
Instead, they are random and can be described using 
distributions. For example, not every user accumulates 12,000 
miles per year on a vehicle, nor does every user print the same 
number of pages per week on a printer.  Therefore, using a 
single constant value for a random variable in the calculation 
is not appropriate. The randomness of the stresses and usage 
must be considered. By considering the randomness, a 
confidence interval rather than a single value of the warranty 
return can be calculated. In this paper, methods for obtaining 
the confidence interval will be provided.  

To accurately predict the warranty returns, the life-stress 
relationship needs to be established first, mainly through 
accelerated tests. Once the life-stress relationship is obtained, 

the effect of the random stresses on the product life can be 
quantitatively estimated.  

In the following sections, the theory of life-stress 
relationships in accelerated testing is discussed first. Then 
methods for predicting warranty returns for two different 
situations are provided. In the first situation, the probability of 
failure during the warranty period is affected only by random 
stresses. In the second situation, the failure is a function of 
both random stresses and random customer usages. 

2 THEORY ON ACCELERATED TESTING AND LIFE-
STRESS RELATIONSHIPS 

The life-stress relationship function explains how stresses 
affect product life. In this function, life is represented by a 
percentile of the failure distribution, pt . In general, the 

function can be written in a log-linear form: 
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iS  is the stress or a transformation of the stress. If we assume 
there is only one stress, based on different transformations, the 
life stress relationship in equation (1) can be [2]: 
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The percentile is selected according to the life characteristic of 
different life time distributions. Some typical life 
characteristics are presented in Table 1. 
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Table 1 – Typical Life Characteristics 

The life-stress relationship can be integrated into a lifetime 



 

distribution. For example, assume there are two independent 
stresses. The life-stress relationship for one stress is Arrhenius 
and for the other stress it is the inverse power law. The 
combined life-stress relationship is:  
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The above equation can be integrated into a life distribution, 
such as the Weibull distribution. For a Weibull distribution, 

��pt . The Weibull model is: 
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In the above equations (1-4), stress S can be either a constant 
or a random variable.  

In order to estimate the parameters in equation (4), failure 
data are needed, so accelerated life tests are conducted to 
obtain failure data first. Then, an estimation method such as 
the maximum likelihood estimation (MLE) method is utilized 
for estimating the model parameters [3].  

In the following sections, we assume that the model 
parameters have been correctly estimated. We will use the 
model to predict the probability of failures for a warranty 
period when the stresses are random. 

3 WARRANTY PREDICTION BASED ON RANDOM 
OPERATING STRESSES 

3.1 Theory on Functions of Random Variables 

Consider a product with two random stresses: temperature 
and voltage. Its failure time distribution is given in equation 
(4). In the traditional method for warranty prediction, the 
average stress values are used in the calculation. Then, the 
predicted probability of failure by the end of the warranty 
period of 0t is: 
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Instead of using the mean value of each stress, we can use 
their distributions to obtain the expected probability of failure. 
Assume the distribution for iS  is )( ii sg  and all the stresses 
are independent.  The expected probability of failure is: 
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The variance of the probability of failure is: 
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Equation (5) is an approximation of equation (6). This is from 
the Taylor series expansion. According to the Taylor series 
expansion, the value of probability of failure can be 
approximated by: 
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If we assume the terms with order of 2 or higher can be 
ignored, the expected value of the probability of failure at 0t  
is: 

� � ),,(),,( 210210 SStFSStFE �   (9) 
If all the stresses are independent, the variance of the 

probability of failure at 0t  can be approximated by: 
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where )( iSVar is the variance of the ith stress.  
If we assume only the terms with order of 3 or higher can 

be ignored, the expected value of the probability of failure at 

0t  is: 

'
�

��


�
��
�

�
&

&
��

2

1

2

)2(
210

)2(

210210 )(
!2

),,(),,(),,(
i

i
i

SVar
S

SStFSStFSStF  (11) 

and the variance is: 
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All the derivatives in the above equations are calculated at the 
mean values of the stresses. In this paper, approximations in 
equation (9) and (10) are used.  The first order derivatives for 
S1 and S2 are: 
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3.2 Example 

Consider a component under two stresses: temperature 
and voltage. The temperature-nonthermal life-stress 
relationship of equation (3) is used. Accelerated tests are 
conducted and a portion of the data is given in Table 2. 

The life distribution is the Weibull distribution. The 
estimated parameters using MLE are: 

� =1.434; B =1986.038; C=125.962; n = 1.8763 
The Weibull probability plot at the test stresses is given in 
Figure 1. 
From the design specifications, it is known that the operating 
temperature and voltage are random variables following 
normal distributions. They are assumed to be independent 



 

from each another. The distribution parameters are given in 
Table 3. 

 
Time Failed (hrs) Temperature (K) Voltage (V) 

108 348 10 
116 348 10 
27 348 15 
48 348 15 
51 378 10 
85 378 10 

138 378 15 
148 378 15 
… … … 

Table 2 – Failure Data for the Two Stresses Example 
ReliaSoft ALTA 7 - www.ReliaSoft.com
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Figure 1 – Weibull Probability Plot of the Test Stresses 

Stress Distribution Parameters 
Temperature Normal )10,300( �� ��N  

Voltage Normal )2,8( �� ��N  

Table 3 – Distribution for the Two Random Stresses 

Assume the warranty time is 400 hours. The expected 
probability of failure and its variance can be obtained using 
equation (9) and (10). The expected value is: 
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Once the mean and variance of the probability of failure are 
obtained, its confidence bounds can be easily calculated by 
assuming that the logarithm of ),,( 210 SStF is normally 
distributed [5]: 
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where ),( 21,0 SStFF � , )]}1(/[)(exp{ 2/1 FFFVarzw �� ��
 and 

),( 21,0 SStFF �  . The upper and lower 90% two-sided bounds 

for this example are [0.030,   0. 289]. 
To validate whether the approximation results are 

accurate enough, the exact analytical solutions of the expected 
probability of failure and its variance are also calculated using 
the integrals in equation (6) and (7). They are: 

� � 115.0),,( 210 �SStFE ;   � � 006.0),,( 210 �SStFVar  
As expected, they are slightly larger than the approximated 
solutions because the high order terms are ignored in equation 
(9) and (10).  The exact analytical solution for the confidence 
bounds of the probability of failure is [0.036, 0.312].  For this 
example, the approximated and exact analytical solutions are 
very close. 

In the above analysis, the uncertainty (randomness) of the 
operating stresses is considered in the calculation. The 
uncertainly of the model parameters is not considered. The 
model parameters are estimated from the available failure 
data. Their uncertainty can be greatly reduced if there is a 
large enough sample size or enough history information. 
However, the uncertainty caused by the random stresses 
cannot be reduced. It is embedded in the product operation. If 
one wants to integrate the uncertainty of model parameters in 
the calculation, equation (8) can be expanded by treating 
model parameters as random variables. For details, please 
refer to [4, 5]. 

3.3 Simulation Results 

In section 3.2, the exact and approximated analytical 
solutions are provided for the example. Both solutions require 
intensive computation. In this section, simulation solutions are 
given. Using Monte Carlo simulation to solve problems with 
random stresses is easy and straight forward. The simulation 
procedure is: 

* Generate n set of random number for (S1, S2). 
* Calculate ),,( 210 SStF  for each set of (S1, S2). 
* Get the mean and variance for the n ),,( 210 SStF . 
Fortunately, it is not necessary to write new simulation 

code. Simulation software packages such as ReliaSoft’s 
RENO can be used. For this example, 10,000 simulation runs 
were conducted in RENO, taking about 1 minute to complete 
the simulation. The mean and variance for the probability of 
failure at warranty time of 400 are 0.114 and 0.006. These 
values are very close to the exact analytical solutions and are 
more accurate than the approximated solutions.  

4 WARRANTY PREDICTION BASED ON RANDOM STRESS 
AND USAGE PROFILE 

In section 3, we discussed how to make accurate warranty 
prediction by considering the randomness of random stresses 
in the calculation. In some applications, such as washing 
machines, the warranty return is not only related to a random 
stress such as load, but is also affected by random customer 
usage. In this section, a stress-strength based method will be 
proposed to solve this complicated problem.  



 

4.1 Theory on Stress-Strength Model 

The stress-strength model is widely used in structural 
reliability calculation [6-8]. Assume the strength distribution 
is F1(X) and stress distribution is F2(X). The expected 
probability of failure is defined as: 
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where )(xFi
 is the CDF (cumulative distribution function) and 

pdf (probability density function).  Figure 2 compares a stress 
distribution and a strength distribution. 
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Figure 2 –Comparison of Stress and Strength Distributions 

The larger the overlap area in Figure 2 is, the greater the 
probability of failure.  

The stress-strength method is also traditionally used in the 
automobile industry for warranty prediction [9]. For example, 
the usage distribution in a 3 year warranty period can be 
thought of as stress and the strength is the failure distribution 
in terms of miles. The predicted probability of failure in the 
warranty period is calculated using equation (14). For the 
automobile industry, a typical warranty policy is 3 years and 
36,000 miles. So equation (14) can be modified to consider 
only vehicles with mileage less than 36,000. The modified 
equation is: 
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where )(xFi
 is the probability of failure at mileage of x and 

)(2 xf  is the pdf  of the usage mileage distribution at x. 
For the automobiles, only the random usage is considered 

in the calculation. For washing machines, the warranty returns 
are affected not only by the random usage but also by the 
random load. In section 4.2, a method of solving problems like 
the washing machine example will be provided.  

4.2 Example 

A washing machine manufacturer conducted a survey on 

the usage profile of its customers. The average loads and 
average hours of using the machine were recorded for each 
user. Since this usage information was available, the company 
wanted to use it to make more realistic estimates of the 
failures of the motors used in the washing machine for a 5 
year warranty period.  

First, accelerated testing was conducted to establish the 
life-stress (load) relationship. Failures were recorded in hours. 
A Weibull-IPL (inverse power law) model was used and the 
parameters were estimated from the failure data. They are: 

�1 =2.350; K=1.692E-5; n = 1.520 
The pdf of this failure time distribution is denoted as f(t). 

From the survey data, the analyst found the average load 
is 7.162 lbs and the average usage duration per week is 2.9 
hours.  Given a 5 year warranty, the total average operating 
time is 754 hours. Applying these two average numbers to the 
warranty prediction, the predicted probability of failure is: 
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However, because more information is available in the 
customer usage data, instead of simply using the average 
values, the distribution of the load and the operating hour can 
be used. The analyst calculated the load distribution from the 
survey data using a Weibull distribution. The parameters are: 

�2=5; �2 = 7.8 
The pdf of the load distribution is denoted as l(s). 

It was found that the average hours and average loads are 
correlated. For the customers with larger average loads, longer 
operating hours are expected. In order to utilize this 
information, the analyst applied a Weibull distribution to the 
operating hours and treated the scale parameter � as a function 
of load. A general log-linear function was used for the �-load 
relation, which is: 

Se 10
3

��� ��  
where S is the load. The parameters in the model for the 5 year 
operating hour are: 

�3 =2; �0=6.094; �1= 0.0896 
This pdf operating hour distribution is denoted as g(x). 

So far, three distributions (the life distribution of the 
motor, the load distribution and the usage hour distribution of 
customers) are available for the warranty return calculation. 
The expected probability of failure by the end of the 5th year 
can be calculated using the stress-strength model with the 
three distributions. 

First, for a given load s, the expected probability of failure 
is: 
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Then, treating load as a random variable, the overall 
probability of failure is: 
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The variance of the probability of failure is: 
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Equation (17) and (18) can be solved numerically. 
Commercial software packages such as Mathcad can be used. 
For this example, the result for the mean value in equation 
(17) and the variance from equation (18) are:  

� � 076.0),( �SXFE ;              � � 014.0),( �SXFVar  
Using these two values, the 90% confidence interval for the 
probability of failure is [0.005,   0.568]. 

Equation (17) can be shown to be similar to equation (6). 
Therefore, the approximation methods for the mean and 
variance in section 3 can be extended to use here. However, 
because of the complexity of the problem, the approximation 
results are not close to the exact analytical solutions anymore. 
To use the mean value of the load and usage to calculate the 
probability of failure, we first need to obtain these two mean 
values. They are: 
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Using these two values, the predicted probability of failure is 
0.039, as given in equation (15). This value is very different 
from the exact analytical solution of 0.076 obtained by 
equation (17). Therefore, the approximated analytical solution 
from the Taylor series expansion is not accurate for this 
example.  

From the above calculation procedure, it can be seen that 
obtaining an analytical solution for the probability of failure 
becomes very challenging when multiple random variables are 
involved. It becomes even more complicated when these 
variables are correlated. Therefore, simulation becomes an 
attractive option. In section 4.3, the simulation solutions for 
the above example are provided.  

4.3 Simulation Results 

The simulation procedure is: 
* Generate a random number for stress S 
* Use this S to generate a random number of usage X 
* Use S and X  to calculate ),( SXF . 
* Repeat above steps for n times and get n ),( SXF  
* Get the mean and variance for the n ),( SXF . 
For this example, 10,000 simulation runs were conducted 

in RENO, taking about 1.5 minutes to complete the 
simulation. The mean and variance for the probability of 
failure at a warranty time of 5 years are 0.075 and 0.014. 
These results are very close to the exact analytical solutions 
and much better than the approximation results. 

5 CONCLUSION 

In this paper, methods for warranty prediction of products 
with random operating stresses and random customer usages 
are discussed. Analytical solutions are provided for the case 
studies. Because of the complexity of the procedure for 
obtaining the analytical solutions, the use of simulation to 
obtain the solutions is also illustrated. Unlike the traditional 
method which can only calculate the mean value of the 
warranty failures and ignores the randomness of the stresses 
and usages, the proposed methods can calculate both mean 
and variance by integrating the randomness of stresses and 
usage into the calculation. This is much better because interval 
estimate provides more information than a simple point 
estimate. Comparisons show that simulation results are very 
accurate. Consequently, it should be preferred by engineers, 
given the complexity of obtaining the analytical solutions.  
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